已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Humans’ Use of AI Assistance: The Effect of Loss Aversion on Willingness to Delegate Decisions

代表 损失厌恶 经济 支付意愿 微观经济学 心理学 精算学 计算机科学 程序设计语言
作者
Jesse Bockstedt,Joseph Buckman
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2024.05585
摘要

As artificial intelligence (AI) tools have become pervasive in business applications, so too have interactions between AI and humans in business processes and decision-making. A growing area of research has focused on human decision and task delegation to AI assistants. Simultaneously, extensive research on algorithm aversion—humans’ resistance to algorithm-based decision tools—has demonstrated potential barriers and issues with AI applications in business. In this paper, we test a simple strategy for mitigating algorithm aversion in the context of AI task delegation. We show that simply changing the framing of decision tasks can allay algorithm aversion. Through multiple studies, we found that participants exhibited a strong preference for human assistance over AI assistance when they were rewarded for task performance (i.e., money was gained for good performance), even when the AI had been shown to outperform the human assistant on the task. Alternatively, when we reframed the task such that the participant experienced losses for poor performance (i.e., money was taken from their endowment for poor performance), the bias for preferring human assistance was removed. Under loss framing, participants delegated the decision task to human and AI assistants at similar rates. We demonstrate this finding across tasks at differing levels of complexity and at different incentive sizes. We also provide evidence that loss framing increases situational awareness, which drives the observed effects. Our results offer useful insights on reducing algorithm aversion that extend the literature and provide actionable suggestions for practitioners and managers. This paper has been This paper was accepted by Dongjun Wu for the Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2024.05585 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pbuitf发布了新的文献求助10
刚刚
从容芮应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得30
3秒前
从容芮应助科研通管家采纳,获得10
3秒前
从容芮应助科研通管家采纳,获得50
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研GO发布了新的文献求助150
6秒前
核桃应助白河采纳,获得10
6秒前
心木完成签到 ,获得积分10
7秒前
阿司匹林完成签到 ,获得积分10
7秒前
8秒前
感动白开水完成签到,获得积分10
8秒前
酷波er应助Flash采纳,获得10
13秒前
14秒前
小张完成签到 ,获得积分10
16秒前
Jemma完成签到 ,获得积分10
21秒前
Qifan完成签到 ,获得积分10
21秒前
满眼星辰完成签到 ,获得积分10
25秒前
李秋静完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
33秒前
优美的小夏完成签到,获得积分10
34秒前
kk发布了新的文献求助30
42秒前
43秒前
rofsc完成签到 ,获得积分10
43秒前
kalah应助蔚蓝采纳,获得20
44秒前
JamesPei应助鼠牛虎兔采纳,获得10
45秒前
ganzhongxin完成签到,获得积分10
46秒前
C9完成签到 ,获得积分10
46秒前
慕子完成签到 ,获得积分10
47秒前
48秒前
Ethan完成签到 ,获得积分0
49秒前
晚风完成签到,获得积分10
50秒前
50秒前
GGbong完成签到 ,获得积分10
50秒前
晚风发布了新的文献求助10
53秒前
Saven发布了新的文献求助10
55秒前
星期八完成签到,获得积分10
55秒前
天天天才完成签到,获得积分10
56秒前
英姑应助张emo采纳,获得30
56秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862312
求助须知:如何正确求助?哪些是违规求助? 3404851
关于积分的说明 10641763
捐赠科研通 3128089
什么是DOI,文献DOI怎么找? 1725102
邀请新用户注册赠送积分活动 830798
科研通“疑难数据库(出版商)”最低求助积分说明 779453