已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Humans’ Use of AI Assistance: The Effect of Loss Aversion on Willingness to Delegate Decisions

代表 损失厌恶 经济 支付意愿 微观经济学 心理学 精算学 计算机科学 程序设计语言
作者
Jesse Bockstedt,Joseph Buckman
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2024.05585
摘要

As artificial intelligence (AI) tools have become pervasive in business applications, so too have interactions between AI and humans in business processes and decision-making. A growing area of research has focused on human decision and task delegation to AI assistants. Simultaneously, extensive research on algorithm aversion—humans’ resistance to algorithm-based decision tools—has demonstrated potential barriers and issues with AI applications in business. In this paper, we test a simple strategy for mitigating algorithm aversion in the context of AI task delegation. We show that simply changing the framing of decision tasks can allay algorithm aversion. Through multiple studies, we found that participants exhibited a strong preference for human assistance over AI assistance when they were rewarded for task performance (i.e., money was gained for good performance), even when the AI had been shown to outperform the human assistant on the task. Alternatively, when we reframed the task such that the participant experienced losses for poor performance (i.e., money was taken from their endowment for poor performance), the bias for preferring human assistance was removed. Under loss framing, participants delegated the decision task to human and AI assistants at similar rates. We demonstrate this finding across tasks at differing levels of complexity and at different incentive sizes. We also provide evidence that loss framing increases situational awareness, which drives the observed effects. Our results offer useful insights on reducing algorithm aversion that extend the literature and provide actionable suggestions for practitioners and managers. This paper has been This paper was accepted by Dongjun Wu for the Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2024.05585 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕擎发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助1111采纳,获得10
3秒前
ding应助美满的砖头采纳,获得10
3秒前
zhb1998发布了新的文献求助10
3秒前
神勇不二发布了新的文献求助10
4秒前
冷艳的语雪完成签到 ,获得积分10
5秒前
6秒前
orixero应助Taro采纳,获得10
7秒前
Van发布了新的文献求助10
7秒前
Criminology34应助徐忠平采纳,获得10
8秒前
衣兮完成签到,获得积分10
11秒前
12秒前
14秒前
LHH完成签到 ,获得积分10
14秒前
神勇不二完成签到,获得积分10
15秒前
哆啦的空间站应助不加糖采纳,获得10
16秒前
林洁佳发布了新的文献求助10
18秒前
18秒前
bkagyin应助皮卡皮卡采纳,获得10
20秒前
20秒前
20秒前
kikiL发布了新的文献求助10
20秒前
Van完成签到,获得积分10
20秒前
上官完成签到 ,获得积分10
20秒前
科研通AI5应助别蛀我牙采纳,获得10
21秒前
赘婿应助Sickey采纳,获得10
21秒前
Wang_miao完成签到 ,获得积分10
22秒前
lu关闭了lu文献求助
22秒前
1111发布了新的文献求助10
25秒前
在水一方应助deway采纳,获得10
26秒前
美满的砖头完成签到,获得积分10
27秒前
Akim应助称心的语梦采纳,获得10
27秒前
30秒前
科研通AI5应助巫马垣采纳,获得10
31秒前
kkk发布了新的文献求助10
36秒前
37秒前
38秒前
默默白桃完成签到 ,获得积分10
40秒前
123完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4994344
求助须知:如何正确求助?哪些是违规求助? 4241931
关于积分的说明 13215274
捐赠科研通 4037464
什么是DOI,文献DOI怎么找? 2209095
邀请新用户注册赠送积分活动 1219913
关于科研通互助平台的介绍 1138472