Humans’ Use of AI Assistance: The Effect of Loss Aversion on Willingness to Delegate Decisions

代表 损失厌恶 经济 支付意愿 微观经济学 心理学 精算学 计算机科学 程序设计语言
作者
Jesse Bockstedt,Joseph Buckman
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:6
标识
DOI:10.1287/mnsc.2024.05585
摘要

As artificial intelligence (AI) tools have become pervasive in business applications, so too have interactions between AI and humans in business processes and decision-making. A growing area of research has focused on human decision and task delegation to AI assistants. Simultaneously, extensive research on algorithm aversion—humans’ resistance to algorithm-based decision tools—has demonstrated potential barriers and issues with AI applications in business. In this paper, we test a simple strategy for mitigating algorithm aversion in the context of AI task delegation. We show that simply changing the framing of decision tasks can allay algorithm aversion. Through multiple studies, we found that participants exhibited a strong preference for human assistance over AI assistance when they were rewarded for task performance (i.e., money was gained for good performance), even when the AI had been shown to outperform the human assistant on the task. Alternatively, when we reframed the task such that the participant experienced losses for poor performance (i.e., money was taken from their endowment for poor performance), the bias for preferring human assistance was removed. Under loss framing, participants delegated the decision task to human and AI assistants at similar rates. We demonstrate this finding across tasks at differing levels of complexity and at different incentive sizes. We also provide evidence that loss framing increases situational awareness, which drives the observed effects. Our results offer useful insights on reducing algorithm aversion that extend the literature and provide actionable suggestions for practitioners and managers. This paper has been This paper was accepted by Dongjun Wu for the Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2024.05585 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金宝完成签到 ,获得积分10
刚刚
刚刚
成就觅翠完成签到,获得积分10
1秒前
nuoran完成签到,获得积分10
2秒前
Zhaowx完成签到,获得积分10
2秒前
2秒前
Herrily发布了新的文献求助10
2秒前
雨醉东风完成签到,获得积分10
2秒前
Affenyi发布了新的文献求助10
2秒前
3秒前
栋仔完成签到,获得积分10
4秒前
淡定的幻枫完成签到 ,获得积分10
4秒前
Kinn完成签到,获得积分10
5秒前
nuoran发布了新的文献求助10
5秒前
木子木子粒完成签到 ,获得积分10
6秒前
7秒前
凡事发生必有利于我完成签到,获得积分10
7秒前
许鸽完成签到,获得积分10
8秒前
Dr_Han发布了新的文献求助10
9秒前
zz完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
tangtang应助zz采纳,获得10
10秒前
lancelot完成签到,获得积分10
11秒前
Hanni完成签到 ,获得积分10
13秒前
欢呼的冰蝶完成签到,获得积分10
13秒前
狂野萤完成签到,获得积分10
15秒前
Yun完成签到 ,获得积分10
16秒前
Holly完成签到,获得积分10
17秒前
gengwenjing完成签到,获得积分0
17秒前
朴实钥匙完成签到,获得积分10
17秒前
Herrily完成签到,获得积分10
19秒前
範範完成签到,获得积分10
19秒前
ZYH完成签到,获得积分20
19秒前
JJ完成签到,获得积分10
21秒前
青云完成签到,获得积分10
21秒前
斩封完成签到,获得积分20
22秒前
白石溪完成签到,获得积分10
22秒前
elsa嘻嘻完成签到 ,获得积分10
22秒前
smottom完成签到,获得积分0
23秒前
啵啵阳子完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389513
捐赠科研通 4512664
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861