Real-world application of PBPK in drug discovery

基于生理学的药代动力学模型 药物发现 计算生物学 生化工程 化学 药品 药理学 药代动力学 医学 工程类 生物 生物化学
作者
Laura G. Al-Amiry Santos,Swati Jaiswal,Kuan‐Fu Chen,Hannah M. Jones,Ian E. Templeton
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:53 (1): 100015-100015 被引量:9
标识
DOI:10.1124/dmd.122.001036
摘要

The utility of physiologically based pharmacokinetic (PBPK) models in support of drug development has been well documented. During the discovery stage, PBPK modeling has increasingly been applied for early risk assessment, prediction of human dose, toxicokinetic dose projection, and early formulation assessment. Previous review articles have proposed model-building and application strategies for PBPK-based first-in-human predictions with comprehensive descriptions of the individual components of PBPK models. This includes the generation of decision trees based on literature reviews to guide the application of PBPK models in the discovery setting. The goal of this minireview is to provide additional guidance on the real-world application of PBPK models in support of the discovery stage of drug development, to assist in decision making. We have illustrated our recommended approach through description of case examples where PBPK models have been successfully applied to aid in human pharmacokinetic projection, candidate selection, and prediction of drug interaction liability for parent and metabolite. Through these case studies, we have highlighted fundamental issues, including preverification in preclinical species, the application of empirical scalars in the prediction of in vivo clearance from in vitro systems, in silico prediction of permeability, and the exploration of aqueous and biorelevant solubility data to predict dissolution. In addition, current knowledge gaps have been highlighted and future directions proposed. SIGNIFICANCE STATEMENT: Through description of 3 case studies, this minireview highlights the fundamental principles of physiologically based pharmacokinetic application during drug discovery. These include preverification of the model in preclinical species, application of empirical scalars where necessary in the prediction of clearance, in silico prediction of permeability, and the exploration of aqueous and biorelevant solubility data to predict dissolution. In addition, current knowledge gaps have been highlighted and future directions proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ada完成签到 ,获得积分10
1秒前
2秒前
三花花花完成签到,获得积分10
2秒前
3秒前
6秒前
嘿嘿应助沉静丹寒采纳,获得10
6秒前
6秒前
6秒前
生动娩发布了新的文献求助10
6秒前
Brian完成签到,获得积分20
7秒前
wuqs发布了新的文献求助10
7秒前
8秒前
dby完成签到,获得积分10
8秒前
9秒前
唐宇欣发布了新的文献求助10
10秒前
充电宝应助wanzhao采纳,获得10
10秒前
Accelerator完成签到,获得积分10
10秒前
seven发布了新的文献求助10
10秒前
11秒前
科研通AI6应助LiYong采纳,获得10
11秒前
11秒前
11秒前
12秒前
ABC123456789发布了新的文献求助10
12秒前
13秒前
CCC发布了新的文献求助50
14秒前
Herry-Jeremy发布了新的文献求助10
14秒前
无极微光应助俏皮短靴采纳,获得20
14秒前
量子星尘发布了新的文献求助10
16秒前
秦奎发布了新的文献求助10
16秒前
lutos发布了新的文献求助10
16秒前
17秒前
晓柒nc发布了新的文献求助10
17秒前
咸鱼发布了新的文献求助10
18秒前
21秒前
生动娩发布了新的文献求助10
22秒前
可爱的香岚完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783