神经质的
连接体
纤维束成像
自闭症
磁共振弥散成像
自闭症谱系障碍
连接组学
神经科学
心理学
人工智能
计算机科学
功能连接
磁共振成像
发展心理学
医学
放射科
作者
Bo‐yong Park,Oualid Benkarim,Clara F. Weber,Valeria Kebets,Serena Fett,Seulki Yoo,Adriana Di Martino,Michael P. Milham,Bratislav Mišić,Sofie L. Valk,Seok‐Jun Hong,Boris C. Bernhardt
出处
期刊:NeuroImage
[Elsevier BV]
日期:2023-12-02
卷期号:285: 120481-120481
被引量:3
标识
DOI:10.1016/j.neuroimage.2023.120481
摘要
Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms.
科研通智能强力驱动
Strongly Powered by AbleSci AI