Improving extractive summarization with semantic enhancement through topic-injection based BERT model

自动汇总 计算机科学 变压器 情报检索 判决 编码器 钥匙(锁) 自然语言处理 语义学(计算机科学) 人工智能 物理 计算机安全 量子力学 电压 程序设计语言 操作系统
作者
Yiming Wang,Jindong Zhang,Zhiyao Yang,Bing Wang,Jingyi Jin,Yitong Liu
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (3): 103677-103677 被引量:9
标识
DOI:10.1016/j.ipm.2024.103677
摘要

In the field of text summarization, extractive techniques aim to extract key sentences from a document to form a summary. However, traditional methods are not sensitive enough to obtain the core semantics of the text, resulting in summaries that contain complicate comprehension. Recently, topic extraction technology extracts core semantics from text, enabling accurate summaries of the main points of a document. In this paper, we introduce the Topic-Injected Bidirectional Encoder Representations from Transformers (TP-BERT), a novel neural auto-encoder model designed explicitly for extractive summarization. TP-BERT integrates document-related topic words into sentences, improving contextual understanding and more accurately aligning summaries with a document’s main theme, addressing a key shortfall in traditional extractive methods. Another major innovation of TP-BERT is the use of contrastive learning during training. This method enhances summarization efficiency by giving prominence to key sentences and minimizing peripheral information. Additionally, we conducted ablation studies and parameter studies of TP-BERT conducted on the CNN/DailyMail, WikiHow, and XSum datasets. In our two main experiments, the average ROUGE-F1 score improved by 2.69 and 0.45 across the three datasets. In comparison to baseline methods, TP-BERT has demonstrated better performance based on the increase in ROUGE-F1 scores on three datasets. Moreover, the semantic differentiation between sentence representations has also contributed positively to the performance enhancements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷平灵完成签到,获得积分10
2秒前
2秒前
吴大语完成签到,获得积分10
3秒前
科研通AI5应助qikkk采纳,获得30
3秒前
黑泽健三郎完成签到,获得积分10
3秒前
123456发布了新的文献求助10
4秒前
Lucas应助小橙子采纳,获得10
4秒前
研友_850EYZ发布了新的文献求助10
4秒前
曦cherish发布了新的文献求助10
4秒前
风趣的靖雁完成签到 ,获得积分10
4秒前
6秒前
玖歌发布了新的文献求助10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
HEAUBOOK应助iuhgnor采纳,获得10
7秒前
7秒前
酷波er应助包谷冬采纳,获得10
8秒前
西啊西完成签到,获得积分10
8秒前
勤劳的筝完成签到,获得积分10
9秒前
倪小完成签到 ,获得积分10
9秒前
奋勇直前的小熊猫完成签到,获得积分10
11秒前
11秒前
烟花应助丸子采纳,获得10
11秒前
prozac发布了新的文献求助10
12秒前
liuxh123发布了新的文献求助30
12秒前
HEAUBOOK应助iuhgnor采纳,获得10
13秒前
柚子完成签到,获得积分10
13秒前
怕黑的纸鹤完成签到 ,获得积分10
14秒前
科研通AI5应助超帅的豪英采纳,获得10
16秒前
nnn完成签到,获得积分10
17秒前
咩咩完成签到,获得积分10
18秒前
花鳥院夕月完成签到,获得积分10
18秒前
康康完成签到,获得积分10
19秒前
漂亮流沙完成签到,获得积分10
19秒前
liuxh123完成签到,获得积分20
20秒前
乐乐应助wuxidixi采纳,获得10
20秒前
123456完成签到,获得积分10
21秒前
21秒前
激流勇进wb完成签到 ,获得积分10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225