IDP-Net: Industrial defect perception network based on cross-layer semantic information guidance and context concentration enhancement

计算机科学 背景(考古学) 特征(语言学) 人工智能 图层(电子) 数据挖掘 模式识别(心理学) 古生物学 哲学 语言学 化学 有机化学 生物
作者
Gang Li,Shilong Zhao,Min Li,Mingle Zhou,Zuobin Ying
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:130: 107677-107677 被引量:2
标识
DOI:10.1016/j.engappai.2023.107677
摘要

Applications in Engineering: In industry, surface defect detection is crucial for improving product quality. However, there are many challenges in industrial inspection scenarios, such as interference from background noise, complex small-target problems, significant variations in target objects, and the problem of finding a balance between inspection speed and accuracy. To address the above problems, this paper proposes an industrial defect-aware network based on cross-layer semantic information guidance and contextual attention enhancement (IDP-Net). Specifically, IDP-Net has four different new features. The contribution of artificial intelligence: Firstly, to solve the industrial surface context and defect similarity problem, this paper proposes a Lightweight Local Global Feature Extraction Network (LLG-Net), unlike other methods, the effective combination of self-attention blocks and convolution blocks ensures gradual integration of global and local features across multiple layers, to improve the detection ability of targets with significant changes in scale, this paper designs a Multiscale Perceptual Feature Aggregation Network (MPA-Net), adequately fuses the shallow fine-grained information and the deep semantic information. Then, to enhance the connection between multi-scale semantic information, an adaptive cross-layer feature fusion module (ACFF) is proposed, which is novel in integrating the characteristics of multiple adjacent levels to help the model better capture the different scale characterisation of the target. Finally, a Region Attention Module (RAM) is proposed and introduced in the detector to enhance the attention to the critical regions around the target object. In particular, this paper proposes a new localisation loss function (MEIoU) that enhances the network's attention to objects at different scales. The experimental results show that 94.3%, 98.7% and 99.5% of [email protected] are obtained on steel, PCB and aluminium surface defect datasets, respectively, and 50 FPS is achieved, which is better than the current mainstream detectors and meets the demand of practical industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝世立完成签到,获得积分10
刚刚
小夏完成签到,获得积分10
1秒前
徐涛完成签到 ,获得积分10
1秒前
Orange应助踏实的书包采纳,获得10
1秒前
如果多年后完成签到 ,获得积分10
2秒前
jay完成签到,获得积分10
2秒前
核动力驴完成签到,获得积分10
2秒前
ADcal完成签到 ,获得积分10
2秒前
小园饼干发布了新的文献求助10
3秒前
yan发布了新的文献求助10
4秒前
XY完成签到,获得积分10
4秒前
华仔应助aabbfz采纳,获得10
4秒前
aaaaaa完成签到,获得积分10
5秒前
fuws完成签到,获得积分10
5秒前
稳重母鸡完成签到 ,获得积分10
6秒前
吉祥高趙完成签到 ,获得积分10
6秒前
cdercder应助大胆的凡采纳,获得10
7秒前
小园饼干完成签到,获得积分10
7秒前
胡图图完成签到,获得积分10
8秒前
整齐冬瓜完成签到,获得积分10
8秒前
开心的萝莉完成签到,获得积分10
8秒前
可怜的小羊完成签到,获得积分10
9秒前
LEE123完成签到,获得积分10
9秒前
9秒前
依依完成签到 ,获得积分10
9秒前
鲤鱼怀绿完成签到,获得积分10
9秒前
11111111111完成签到,获得积分10
10秒前
淡定从霜完成签到 ,获得积分10
10秒前
早睡能长个完成签到,获得积分10
10秒前
8R60d8应助木木木采纳,获得10
10秒前
我能行完成签到,获得积分10
11秒前
远方的蓝风铃完成签到,获得积分10
11秒前
稳重奇异果完成签到,获得积分10
11秒前
12秒前
SC武完成签到,获得积分10
12秒前
微纳组刘同完成签到,获得积分10
12秒前
上官若男应助蟹蟹采纳,获得10
13秒前
昏睡的蟠桃应助朱晖采纳,获得50
13秒前
呜呜呜呜呜呜呜呜完成签到,获得积分10
13秒前
研友_Raven完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804360
求助须知:如何正确求助?哪些是违规求助? 3349199
关于积分的说明 10342245
捐赠科研通 3065248
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808622
科研通“疑难数据库(出版商)”最低求助积分说明 764629