Exploring the potential of StyleGAN for modeling high-quality and diverse digital wood textures: Towards advancements in the wood industry

纹理(宇宙学) 计算机科学 纹理合成 人工智能 数字图像 像素 模式识别(心理学) 图像纹理 图像处理 图像(数学)
作者
Weihui Zhan,Zhen Yang,Hui Xu,Sitan Xue,Jinguo Lin,Xin Guan
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:209: 117880-117880 被引量:2
标识
DOI:10.1016/j.indcrop.2023.117880
摘要

Wood texture is pivotal in maximizing the value of trees and timber resources. Consequently, digital modeling and simulation of wood texture have become essential in wood science and industry. Therefore, researching simulation modeling techniques for digital wood texture has significant implications for advancing wood science and industry. This paper introduces a novel approach to modeling and simulating wood texture, focusing on the perspective of deep learning. The proposed method explored the viability of utilizing the StyleGAN model to generate digital wood texture. Fréchet Inception Distance(FID), visual Turing tests, and 1/f fluctuation spectrum analysis were used to evaluate the effectiveness of the digital wood texture models. Additionally, various control techniques were discussed for generating digital wood texture using StyleGAN models. The experimental results strongly indicated that the StyleGAN model exhibits robust capabilities in generating digital wood texture, as evidenced by an FID index of 13. Moreover, the visual Turing tests revealed that professional identification was similar to random guessing, while the fluctuation spectrum analysis demonstrated pixel distribution frequencies similar to those observed in real wood textures. Furthermore, in terms of controlling the simulation of digital wood texture, the StyleGAN model demonstrated remarkable abilities surpassing any previous models based on physical modeling. By fine-tuning truncation parameters and employing network layer mixing techniques, the model could generate the wood texture of various tree species, demonstrating outstanding generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Koi_发布了新的文献求助10
1秒前
1秒前
蘅皋发布了新的文献求助20
1秒前
青萝发布了新的文献求助10
2秒前
2秒前
2秒前
tianya完成签到,获得积分10
3秒前
文子发布了新的文献求助10
3秒前
zhaoyuyuan发布了新的文献求助10
4秒前
bancheng发布了新的文献求助10
4秒前
玫瑰窃贼(情绪稳定版)完成签到,获得积分10
4秒前
贺岁安发布了新的文献求助10
5秒前
温柔发布了新的文献求助10
5秒前
bird完成签到,获得积分10
5秒前
Amai发布了新的文献求助10
6秒前
7秒前
嘻嘻嘻发布了新的文献求助10
7秒前
wanci应助吱吱采纳,获得10
7秒前
敏感的山晴完成签到 ,获得积分10
8秒前
8秒前
英俊的铭应助温柔采纳,获得10
8秒前
9秒前
9秒前
11秒前
unqiue发布了新的文献求助10
12秒前
贺岁安完成签到,获得积分20
13秒前
CipherSage应助仰望采纳,获得10
13秒前
suicone完成签到,获得积分10
13秒前
16秒前
芫华发布了新的文献求助10
20秒前
22秒前
23秒前
23秒前
白桥发布了新的文献求助10
25秒前
热切菩萨应助13201099463采纳,获得10
28秒前
吱吱发布了新的文献求助10
28秒前
完美世界应助蘅皋采纳,获得10
29秒前
ma发布了新的文献求助10
29秒前
lei完成签到,获得积分10
30秒前
白桥完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956027
求助须知:如何正确求助?哪些是违规求助? 3502176
关于积分的说明 11106477
捐赠科研通 3232588
什么是DOI,文献DOI怎么找? 1787020
邀请新用户注册赠送积分活动 870340
科研通“疑难数据库(出版商)”最低求助积分说明 801972