亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the potential of StyleGAN for modeling high-quality and diverse digital wood textures: Towards advancements in the wood industry

纹理(宇宙学) 计算机科学 纹理合成 人工智能 数字图像 像素 模式识别(心理学) 图像纹理 图像处理 图像(数学)
作者
Weihui Zhan,Zhen Yang,Hui Xu,Sitan Xue,Jinguo Lin,Xin Guan
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:209: 117880-117880 被引量:2
标识
DOI:10.1016/j.indcrop.2023.117880
摘要

Wood texture is pivotal in maximizing the value of trees and timber resources. Consequently, digital modeling and simulation of wood texture have become essential in wood science and industry. Therefore, researching simulation modeling techniques for digital wood texture has significant implications for advancing wood science and industry. This paper introduces a novel approach to modeling and simulating wood texture, focusing on the perspective of deep learning. The proposed method explored the viability of utilizing the StyleGAN model to generate digital wood texture. Fréchet Inception Distance(FID), visual Turing tests, and 1/f fluctuation spectrum analysis were used to evaluate the effectiveness of the digital wood texture models. Additionally, various control techniques were discussed for generating digital wood texture using StyleGAN models. The experimental results strongly indicated that the StyleGAN model exhibits robust capabilities in generating digital wood texture, as evidenced by an FID index of 13. Moreover, the visual Turing tests revealed that professional identification was similar to random guessing, while the fluctuation spectrum analysis demonstrated pixel distribution frequencies similar to those observed in real wood textures. Furthermore, in terms of controlling the simulation of digital wood texture, the StyleGAN model demonstrated remarkable abilities surpassing any previous models based on physical modeling. By fine-tuning truncation parameters and employing network layer mixing techniques, the model could generate the wood texture of various tree species, demonstrating outstanding generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的诗柳完成签到 ,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
4秒前
隐形曼青应助刻苦紫文采纳,获得30
10秒前
15秒前
24秒前
嘟嘟嘟嘟完成签到,获得积分10
26秒前
32秒前
脑洞疼应助嘟嘟嘟嘟采纳,获得10
32秒前
33秒前
42秒前
zzh发布了新的文献求助10
47秒前
碳酸芙兰完成签到,获得积分10
47秒前
59秒前
is发布了新的文献求助10
1分钟前
1分钟前
1分钟前
吱吱发布了新的文献求助20
1分钟前
1分钟前
小付发布了新的文献求助20
1分钟前
is完成签到,获得积分10
1分钟前
1分钟前
mm发布了新的文献求助10
1分钟前
桂桂发布了新的文献求助10
1分钟前
友好板栗发布了新的文献求助10
1分钟前
优美的谷完成签到,获得积分10
1分钟前
顾矜应助小付采纳,获得10
1分钟前
科研通AI2S应助吱吱采纳,获得10
1分钟前
1分钟前
1分钟前
tomomi61发布了新的文献求助30
1分钟前
科研通AI5应助TiAmo采纳,获得10
1分钟前
Dawn发布了新的文献求助60
1分钟前
aoba完成签到 ,获得积分10
1分钟前
1分钟前
斯寜完成签到,获得积分0
1分钟前
2分钟前
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
刻苦紫文发布了新的文献求助30
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333659
关于积分的说明 10262932
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673586
邀请新用户注册赠送积分活动 802070
科研通“疑难数据库(出版商)”最低求助积分说明 760504