Cross-Domain Few-Shot Learning Based on Graph Convolution Contrast for Hyperspectral Image Classification

计算机科学 人工智能 特征提取 分类器(UML) 模式识别(心理学) 卷积(计算机科学) 图形 特征(语言学) 对比度(视觉) 高光谱成像 上下文图像分类 图像(数学) 理论计算机科学 人工神经网络 语言学 哲学
作者
Zhen Ye,Jie Wang,Tao Sun,Jinxin Zhang,Wei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2024.3352093
摘要

Training a deep-learning classifier notoriously requires hundreds of labeled samples at least. Many practical hyperspectral image (HSI) scenarios suffer from a substantial cost associated with obtaining a number of labeled samples. Few-shot learning (FSL), which can realize accurate classification with prior knowledge and limited supervisory experience, has demonstrated superior performance in the HSI classification. However, previous few-shot classification algorithms assume that the training and testing data are distributed in the same domains, which is a stringent assumption in realistic applications. To alleviate this limitation, we propose a cross-domain FSL based on graph convolution contrast (GCC-FSL). The proposed method leverages cross-domain learning to acquire transferable knowledge from the source domain for classifying samples in the target domain. Specifically, a positive and negative pairs module is designed for constructing positive and negative pairs by matching the class prototypes of the target domain with those of the source domain, which aligns the data distribution of the source and target domains. In addition, a graph convolution contrast (GCC) module is proposed for extracting global graph-structure information of HSI to improve the ability of feature expression and constructing a graph-contrast loss to solve a domain-shift problem. Finally, a multiscale feature extraction network is designed to expand convolutional receptive fields through feature reuse and increase information interaction for fine-grained feature extraction. The experimental results demonstrate the improved performance for the proposed FSL framework relative to both state-of-the-art convolutional neural network (CNN)-based methods as well as other few-shot techniques. The source code of this method can be found at https://github.com/JieW-ww/GCC-FSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁锐彬发布了新的文献求助10
刚刚
1秒前
2秒前
thisky完成签到,获得积分10
2秒前
幽默胜发布了新的文献求助10
3秒前
wjz发布了新的文献求助10
5秒前
5秒前
望北发布了新的文献求助30
6秒前
7秒前
8秒前
8秒前
领导范儿应助小川采纳,获得10
9秒前
斯文败类应助TWO宝采纳,获得10
9秒前
称心凡发布了新的文献求助20
10秒前
CX发布了新的文献求助10
10秒前
研友_LaVPdn发布了新的文献求助10
10秒前
科研通AI5应助美丽的梦槐采纳,获得10
10秒前
粗心的飞槐完成签到 ,获得积分10
12秒前
芳芳发布了新的文献求助10
13秒前
13秒前
刘某发布了新的文献求助10
14秒前
研友_VZG7GZ应助zeee采纳,获得10
15秒前
鹏笑完成签到,获得积分10
15秒前
16秒前
lang发布了新的文献求助10
17秒前
汉堡包应助洺全采纳,获得10
17秒前
yeape发布了新的文献求助10
18秒前
蓝天完成签到,获得积分10
18秒前
阿卫完成签到,获得积分10
18秒前
李健应助兴奋大马喽采纳,获得10
19秒前
奇拉维特完成签到 ,获得积分10
21秒前
刘明生发布了新的文献求助10
21秒前
自然卷卷卷完成签到,获得积分20
21秒前
善学以致用应助阿蒙采纳,获得20
21秒前
22秒前
梁锐彬完成签到,获得积分10
22秒前
研友_LaVPdn完成签到,获得积分10
22秒前
qwd完成签到,获得积分10
23秒前
刘某完成签到,获得积分10
24秒前
Lmy完成签到,获得积分10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243