Cross-Domain Few-Shot Learning Based on Graph Convolution Contrast for Hyperspectral Image Classification

计算机科学 人工智能 特征提取 分类器(UML) 模式识别(心理学) 卷积(计算机科学) 图形 特征(语言学) 对比度(视觉) 高光谱成像 上下文图像分类 图像(数学) 理论计算机科学 人工神经网络 语言学 哲学
作者
Zhen Ye,Jie Wang,Tao Sun,Jinxin Zhang,Wei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2024.3352093
摘要

Training a deep-learning classifier notoriously requires hundreds of labeled samples at least. Many practical hyperspectral image (HSI) scenarios suffer from a substantial cost associated with obtaining a number of labeled samples. Few-shot learning (FSL), which can realize accurate classification with prior knowledge and limited supervisory experience, has demonstrated superior performance in the HSI classification. However, previous few-shot classification algorithms assume that the training and testing data are distributed in the same domains, which is a stringent assumption in realistic applications. To alleviate this limitation, we propose a cross-domain FSL based on graph convolution contrast (GCC-FSL). The proposed method leverages cross-domain learning to acquire transferable knowledge from the source domain for classifying samples in the target domain. Specifically, a positive and negative pairs module is designed for constructing positive and negative pairs by matching the class prototypes of the target domain with those of the source domain, which aligns the data distribution of the source and target domains. In addition, a graph convolution contrast (GCC) module is proposed for extracting global graph-structure information of HSI to improve the ability of feature expression and constructing a graph-contrast loss to solve a domain-shift problem. Finally, a multiscale feature extraction network is designed to expand convolutional receptive fields through feature reuse and increase information interaction for fine-grained feature extraction. The experimental results demonstrate the improved performance for the proposed FSL framework relative to both state-of-the-art convolutional neural network (CNN)-based methods as well as other few-shot techniques. The source code of this method can be found at https://github.com/JieW-ww/GCC-FSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjh发布了新的文献求助10
1秒前
Chency完成签到,获得积分10
1秒前
不配.应助柳青采纳,获得30
1秒前
小二郎应助我爱学习呢采纳,获得10
2秒前
田様应助kate采纳,获得30
2秒前
李爱国应助子建采纳,获得10
4秒前
Scarlett完成签到 ,获得积分10
4秒前
喝酸奶不舔盖完成签到 ,获得积分0
5秒前
nini发布了新的文献求助10
5秒前
tlx发布了新的文献求助10
6秒前
7秒前
Shmily完成签到,获得积分10
7秒前
万能图书馆应助北非采纳,获得10
8秒前
Chency发布了新的文献求助10
10秒前
10秒前
机灵若完成签到,获得积分10
11秒前
vegetable完成签到,获得积分10
11秒前
12秒前
13秒前
uniphoton完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
852应助专一的青槐采纳,获得10
14秒前
普通用户30号完成签到 ,获得积分10
14秒前
子建发布了新的文献求助10
15秒前
W查查发布了新的文献求助10
16秒前
2428发布了新的文献求助10
17秒前
Miss发布了新的文献求助10
17秒前
乖就发布了新的文献求助30
18秒前
顾矜应助岸上牛采纳,获得10
18秒前
20秒前
20秒前
20秒前
英俊的铭应助小xy采纳,获得10
21秒前
21秒前
21秒前
23秒前
坦率的棒棒糖完成签到,获得积分20
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452257
求助须知:如何正确求助?哪些是违规求助? 3919366
关于积分的说明 12164956
捐赠科研通 3569481
什么是DOI,文献DOI怎么找? 1960186
邀请新用户注册赠送积分活动 999536
科研通“疑难数据库(出版商)”最低求助积分说明 894489