A Dual-Branch Multiscale Transformer Network for Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 人工智能 对偶(语法数字) 遥感 计算机视觉 地质学 文学类 艺术
作者
Cuiping Shi,Shuheng Yue,Liguo Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-20 被引量:11
标识
DOI:10.1109/tgrs.2024.3351486
摘要

In recent years, convolutional neural networks (CNNs) have achieved great success in hyperspectral image (HSI) classification tasks. CNNs focus more on the local features of HSIs. The recently emerging Transformer network has shown great interest in the global features of HSIs. However, existing Transformer networks only consider single-scale feature extraction and do not combine the advantages of multiscale feature extraction and Transformer global feature extraction. To address this issue, this article proposes a dual-branch multiscale Transformer (DBMST) for HSI classification. First, a large-size spectral convolution kernel is utilized for the spectral dimension of the hyperspectral cube for downsampling feature extraction. Next, a channel shrink soft split module (CS3M) is proposed, which not only solves the problem of missing local information in large-scale tokens but also extracts shallow features and performs dimensionality reduction on channels. Then, considering the different dimensions of features extracted at different scales in two branches, a pooled activation fusion module (PAFM) is carefully designed. Finally, the proposed DBMST is evaluated on three commonly used HSI datasets. The experimental results show that DBMST achieves better classification performance compared to other advanced networks, demonstrating the effectiveness of the proposed method in HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林秋沐完成签到,获得积分10
1秒前
清1031完成签到 ,获得积分10
1秒前
天天呼的海角完成签到,获得积分10
1秒前
C5b6789n完成签到,获得积分10
2秒前
搜集达人应助文静妍采纳,获得10
5秒前
努力的小金完成签到,获得积分20
6秒前
7秒前
7秒前
xelloss完成签到,获得积分10
8秒前
zh123完成签到,获得积分10
8秒前
咎星完成签到,获得积分10
9秒前
9秒前
Akim应助科研通管家采纳,获得30
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
feaxi应助科研通管家采纳,获得20
10秒前
天天快乐应助科研通管家采纳,获得10
11秒前
加美希尔发布了新的文献求助10
11秒前
wanci应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
卡卡西应助科研通管家采纳,获得20
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI5应助啥也不会采纳,获得30
13秒前
Larrin发布了新的文献求助10
14秒前
刘敏小七给刘敏小七的求助进行了留言
15秒前
grzzz完成签到,获得积分10
16秒前
Hello应助Sunny_boy采纳,获得10
16秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823675
求助须知:如何正确求助?哪些是违规求助? 3366087
关于积分的说明 10438843
捐赠科研通 3085204
什么是DOI,文献DOI怎么找? 1697269
邀请新用户注册赠送积分活动 816302
科研通“疑难数据库(出版商)”最低求助积分说明 769492