Improvement of 2D cine image quality using 3D priors and cycle generative adversarial network for low field MRI‐guided radiation therapy

图像质量 先验概率 医学影像学 生成对抗网络 领域(数学) 人工智能 对抗制 质量(理念) 迭代重建 医学物理学 计算机科学 生成语法 图像(数学) 计算机视觉 数学 物理 贝叶斯概率 量子力学 纯数学
作者
Yuyan Dong,Fei Yang,Jie Wen,Jing Cai,Feiyan Zeng,Mengqiu Liu,Shuang Li,Jiangtao Wang,John C. Ford,Lorraine Portelance,Yidong Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (5): 3495-3509 被引量:4
标识
DOI:10.1002/mp.16860
摘要

Abstract Background Cine magnetic resonance (MR) images have been used for real‐time MR guided radiation therapy (MRgRT). However, the onboard MR systems with low‐field strength face the problem of limited image quality. Purpose To improve the quality of cine MR images in MRgRT using prior image information provided by the patient planning and positioning MR images. Methods This study employed MR images from 18 pancreatic cancer patients who received MR‐guided stereotactic body radiation therapy. Planning 3D MR images were acquired during the patient simulation, and positioning 3D MR images and 2D sagittal cine MR images were acquired before and during the beam delivery, respectively. A deep learning‐based framework consisting of two cycle generative adversarial networks (CycleGAN), Denoising CycleGAN and Enhancement CycleGAN, was developed to establish the mapping between the 3D and 2D MR images. The Denoising CycleGAN was trained to first denoise the cine images using the time domain cine image series, and the Enhancement CycleGAN was trained to enhance the spatial resolution and contrast by taking advantage of the prior image information from the planning and positioning images. The denoising performance was assessed by signal‐to‐noise ratio (SNR), structural similarity index measure, peak SNR, blind/reference‐less image spatial quality evaluator (BRISQUE), natural image quality evaluator, and perception‐based image quality evaluator scores. The quality enhancement performance was assessed by the BRISQUE and physician visual scores. In addition, the target contouring was evaluated on the original and processed images. Results Significant differences were found for all evaluation metrics after Denoising CycleGAN processing. The BRISQUE and visual scores were also significantly improved after sequential Denoising and Enhancement CycleGAN processing. In target contouring evaluation, Dice similarity coefficient, centroid distance, Hausdorff distance, and average surface distance values were significantly improved on the enhanced images. The whole processing time was within 20 ms for a typical input image size of 512 × 512. Conclusion Taking advantage of the prior high‐quality positioning and planning MR images, the deep learning‐based framework enhanced the cine MR image quality significantly, leading to improved accuracy in automatic target contouring. With the merits of both high computational efficiency and considerable image quality enhancement, the proposed method may hold important clinical implication for real‐time MRgRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恶恶么v完成签到,获得积分10
刚刚
我爱螺蛳粉完成签到 ,获得积分10
1秒前
2秒前
王不留行完成签到,获得积分10
3秒前
qq158014169完成签到 ,获得积分10
3秒前
梧桐树完成签到,获得积分10
4秒前
CMD完成签到 ,获得积分10
5秒前
眼睛大的电脑完成签到 ,获得积分0
5秒前
Mr城南完成签到,获得积分20
5秒前
CR7应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得30
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
孤独盼望完成签到,获得积分10
7秒前
mjlink完成签到,获得积分10
8秒前
9秒前
OvO_4577完成签到 ,获得积分10
10秒前
muzi完成签到,获得积分10
11秒前
钱超完成签到,获得积分10
12秒前
Jupiter完成签到,获得积分10
19秒前
奋斗蜗牛完成签到,获得积分10
20秒前
sxd完成签到,获得积分10
20秒前
20秒前
liu123479完成签到,获得积分10
20秒前
verdure完成签到,获得积分10
21秒前
TN完成签到 ,获得积分10
23秒前
Jelly完成签到 ,获得积分10
25秒前
25秒前
健忘曼彤完成签到,获得积分10
27秒前
爆杀小白鼠完成签到,获得积分10
27秒前
Solar energy完成签到,获得积分10
29秒前
我服有点黑完成签到,获得积分10
30秒前
31秒前
31秒前
田様应助Mr城南采纳,获得10
32秒前
科研通AI6应助Edge采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4542764
求助须知:如何正确求助?哪些是违规求助? 3975710
关于积分的说明 12312102
捐赠科研通 3643464
什么是DOI,文献DOI怎么找? 2006519
邀请新用户注册赠送积分活动 1041854
科研通“疑难数据库(出版商)”最低求助积分说明 930992