Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery

急性呼吸衰竭 医学 呼吸衰竭 重症监护医学 可靠性工程 外科 计算机科学 工程类 麻醉 机械通风
作者
Hyun‐Kyu Yoon,Hyun Joo Kim,Yi‐Jun Kim,Hyeonhoon Lee,Bo Rim Kim,Hyongmin Oh,Hee‐Pyoung Park,Hyung‐Chul Lee
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier BV]
卷期号:132 (6): 1304-1314 被引量:1
标识
DOI:10.1016/j.bja.2024.01.030
摘要

Background Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery. Methods Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013–9). External validation was performed using three separate cohorts A–C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds. Results The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908–0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876–0.882), 0.872 (95% CI, 0.870–0.874), and 0.931 (95% CI, 0.925–0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively. Conclusions Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻元风发布了新的文献求助10
刚刚
MG完成签到,获得积分10
1秒前
合适台灯发布了新的文献求助10
2秒前
故意的曼香完成签到,获得积分10
3秒前
3秒前
3秒前
pluvia完成签到,获得积分10
4秒前
皮皮完成签到,获得积分10
4秒前
Turew应助jason367采纳,获得10
4秒前
思源应助地表飞猪采纳,获得10
4秒前
5秒前
lomintus发布了新的文献求助10
5秒前
小小蚂蚁给小小蚂蚁的求助进行了留言
6秒前
7秒前
李健应助故意的鸿涛采纳,获得10
7秒前
和谐白云完成签到,获得积分10
8秒前
李爱国应助小憨兔cc采纳,获得10
10秒前
genova发布了新的文献求助10
10秒前
12秒前
wind2631完成签到,获得积分10
14秒前
14秒前
14秒前
wanci应助土豆妮采纳,获得10
15秒前
昏睡的蟠桃给善良的剑通的求助进行了留言
16秒前
17秒前
20秒前
张家小猫发布了新的文献求助10
21秒前
21秒前
清脆若南完成签到,获得积分10
22秒前
23秒前
张小尤完成签到,获得积分10
24秒前
今后应助光亮向露采纳,获得10
24秒前
gwh68964402gwh完成签到,获得积分10
25秒前
26秒前
孤独白拍完成签到 ,获得积分10
26秒前
wang发布了新的文献求助10
27秒前
君莫笑完成签到,获得积分10
27秒前
852应助pan采纳,获得30
27秒前
小马甲应助宝福X暴富采纳,获得10
28秒前
TXNM发布了新的文献求助10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3384000
关于积分的说明 10532144
捐赠科研通 3104257
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878