Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery

急性呼吸衰竭 医学 呼吸衰竭 重症监护医学 可靠性工程 外科 计算机科学 工程类 麻醉 机械通风
作者
Hyun‐Kyu Yoon,Hyun Joo Kim,Yi‐Jun Kim,Hyeonhoon Lee,Bo Rim Kim,Hyongmin Oh,Hee‐Pyoung Park,Hyung‐Chul Lee
出处
期刊:BJA: British Journal of Anaesthesia [Elsevier BV]
卷期号:132 (6): 1304-1314 被引量:5
标识
DOI:10.1016/j.bja.2024.01.030
摘要

Background Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery. Methods Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013–9). External validation was performed using three separate cohorts A–C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds. Results The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908–0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876–0.882), 0.872 (95% CI, 0.870–0.874), and 0.931 (95% CI, 0.925–0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively. Conclusions Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANKAR完成签到,获得积分10
刚刚
nuo_11完成签到,获得积分10
1秒前
隐形曼青应助种花兔采纳,获得10
3秒前
深情安青应助咕咕咕采纳,获得10
3秒前
浮游应助小姜采纳,获得10
3秒前
Orange应助咕咕咕采纳,获得10
3秒前
花花完成签到,获得积分10
5秒前
5秒前
未来完成签到,获得积分10
5秒前
宅了五百年完成签到,获得积分10
7秒前
7秒前
Freeasy完成签到 ,获得积分10
8秒前
花花发布了新的文献求助10
8秒前
Potaku完成签到,获得积分10
8秒前
9秒前
11秒前
清水胖子发布了新的文献求助10
11秒前
脑洞疼应助小闵采纳,获得10
13秒前
Bethany0215完成签到,获得积分10
14秒前
muzi发布了新的文献求助10
14秒前
852应助ERIS采纳,获得30
15秒前
16秒前
安详的曲奇完成签到,获得积分10
16秒前
冲浪男孩发布了新的文献求助10
17秒前
18秒前
21秒前
SciGPT应助熊升树采纳,获得10
21秒前
辛勤的碧萱完成签到,获得积分10
21秒前
可爱的函函应助Cssss采纳,获得10
22秒前
英姑应助大点搞采纳,获得10
22秒前
爱笑的无心完成签到 ,获得积分10
22秒前
打打应助清水胖子采纳,获得10
23秒前
23秒前
xia完成签到,获得积分10
25秒前
笛卡尔发布了新的文献求助10
26秒前
26秒前
结实的皮皮虾完成签到,获得积分10
27秒前
CipherSage应助ccalvintan采纳,获得20
27秒前
Wei_Li发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221