Microscopic identification of foodborne bacterial pathogens based on deep learning method

副溶血性弧菌 鉴定(生物学) 深度学习 卷积神经网络 蜡样芽孢杆菌 生化工程 计算机科学 人工智能 生物 细菌 工程类 遗传学 植物
作者
Qiong Chen,Han Bao,Hui Li,Ting Wu,Xin Qi,Changqiang Zhu,Weilong Tan,Desheng Jia,Dongming Zhou,Yong Qi
出处
期刊:Food Control [Elsevier BV]
卷期号:161: 110413-110413 被引量:4
标识
DOI:10.1016/j.foodcont.2024.110413
摘要

Accurate and rapid detection of foodborne bacterial pathogens is critical for food quality control. Nowadays, tracking morphological bacterial properties using microscope is still a priority at the grass-roots food supervision department due to its simplicity and low cost. However, the method requires highly professional personnel and there are certain misjudgments in the process of analysis. Automatically recognizing foodborne pathogen using deep learning algorithm to replace manual microscopy will not only reduce expert cost, artificial misjudgment, and operation time in detection, but also provide more objective and accurate identification. Here, we firstly constructed a high-quality and large-scale dataset of foodborne pathogenic bacteria, allowing the deep learning-based model to be efficiently trained and achieve accurate identification. The deep convolutional neural network-based model is capable of identifying six common foodborne pathogens, including Escherichia coli (O157:H7), Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, Salmonella typhi, and Streptococcus hemolyticus, with accuracy rates of 90%–100%. This method can assist or replace the manual microscopic inspection step in traditional detection methods, and is promising to break through the traditional approach that heavily relies on manual judgment, greatly reduce the cost of experts and human errors, and provide rapid, accurate, and powerful discriminatory results in large quantities for detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿航完成签到,获得积分10
刚刚
will完成签到,获得积分10
刚刚
牛马完成签到,获得积分10
2秒前
2秒前
王哪跑12完成签到 ,获得积分10
4秒前
4秒前
Huuu完成签到,获得积分10
5秒前
科研通AI5应助陈爱佳采纳,获得10
5秒前
心灵美的石头完成签到,获得积分10
6秒前
ZXB发布了新的文献求助10
8秒前
Leo完成签到,获得积分10
11秒前
13秒前
Patrick完成签到,获得积分10
13秒前
Jasper应助整齐红酒采纳,获得10
14秒前
依依完成签到 ,获得积分10
15秒前
WHAT0217发布了新的文献求助30
15秒前
守望者1123发布了新的文献求助10
18秒前
18秒前
21秒前
22秒前
整齐红酒完成签到,获得积分10
23秒前
榴莲发布了新的文献求助10
25秒前
整齐红酒发布了新的文献求助10
26秒前
26秒前
传奇3应助坦率的果汁采纳,获得10
27秒前
27秒前
28秒前
风雪丽人完成签到,获得积分10
30秒前
陈爱佳发布了新的文献求助10
30秒前
32秒前
快递乱跑完成签到 ,获得积分10
32秒前
godblessyou发布了新的文献求助20
34秒前
夜雨声烦完成签到,获得积分10
34秒前
a623662980发布了新的文献求助30
34秒前
木子完成签到 ,获得积分10
34秒前
Lucas应助Wuhuijing采纳,获得10
35秒前
田様应助zn315315采纳,获得10
36秒前
36秒前
40秒前
Johnson完成签到 ,获得积分10
41秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386137
关于积分的说明 10543851
捐赠科研通 3106858
什么是DOI,文献DOI怎么找? 1711183
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774409