亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk assessment of customer churn in telco using FCLCNN-LSTM model

计算机科学 卷积神经网络 机器学习 数据挖掘 深度学习 人工神经网络 特征选择 特征(语言学) 人工智能 哲学 语言学
作者
Cheng Wang,Congjun Rao,Fuyan Hu,Xinping Xiao,Mark Goh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123352-123352 被引量:7
标识
DOI:10.1016/j.eswa.2024.123352
摘要

Telco players are constantly evaluating their loss in customer revenue or customer churn, especially on the prevention, control, and risk assessment of churn. In this paper, a domain-order based shallow fusion deep learning model, the Fully Connected Layer Convolutional Neural Network - Long Short-Term Memory (FCLCNN-LSTM) is designed and applied to a decision support system to assess the risk of customer churn. First, a majority least absolute shrinkage and selection operator (Maj-LASSO) algorithm is proposed to identify churn predictors that have an important impact on classification. The proposed Maj-LASSO algorithm is different from previous studies that solved the study of unbalanced data and feature selection separately, but solved both as one problem to give the feature selection method under unbalanced data. Then, a fully connected layer based on multiple ReLU neurons is used to balance the importance of the features. Doing so addresses the problem where some key features are overlooked due to their unequal contribution to the risk assessment of telco customer churn. Third, a 2D convolutional neural network based on domain information and an LSTM model based on ordinal information are combined to learn the complex mapping between the features and labels, to improve the accuracy and generalizability of the predictive model. The proposed FCLCNN-LSTM model is different from the previous single spatial model or temporal model, but improves the network classification feature extraction capability from both temporal and spatial dimensions, thus innovatively solving the problem of model development for large-scale and high-dimensional data, and applying it in the field of telecommunication customer churn prediction. Finally, using three public customer churn datasets from the Kaggle and UCI platform, the FCLCNN-LSTM model is compared against other classification models, namely, Logistic Regression, Support Vector Machine, Random Forest, eXtreme Gradient Boosting (XGBoost), Convolutional Neural Network, and Long Short-Term Memory. The experimental results inform that the accuracy of the FCLCNN-LSTM is 3.43% higher than that of the other comparison models, while the AUC is 4.84% higher. Thus, the FCLCNN-LSTM model provides a better decision-making reference for telco players to identify potential churners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
37秒前
1分钟前
cdercder应助hugeyoung采纳,获得10
1分钟前
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
1分钟前
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
2分钟前
fhw完成签到 ,获得积分10
2分钟前
2分钟前
linda完成签到,获得积分10
2分钟前
bc完成签到,获得积分10
3分钟前
楠茸完成签到 ,获得积分10
3分钟前
3分钟前
大意的皓轩完成签到 ,获得积分10
4分钟前
4分钟前
matthewa发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
顾子墨发布了新的文献求助10
6分钟前
6分钟前
6分钟前
mingjiang发布了新的文献求助10
6分钟前
6分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
丘比特应助谦让的西装采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
赘婿应助谦让的西装采纳,获得10
8分钟前
满意的伊完成签到,获得积分10
8分钟前
8分钟前
wannna发布了新的文献求助10
8分钟前
wannna完成签到,获得积分10
8分钟前
9分钟前
9分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376278
关于积分的说明 10492556
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842