Husformer: A Multimodal Transformer for Multimodal Human State Recognition

情态动词 计算机科学 变压器 语音识别 电压 电气工程 工程类 化学 高分子化学
作者
Ruiqi Wang,Wonse Jo,Dezhong Zhao,Weizheng Wang,Arjun Gupte,Baijian Yang,Guohua Chen,Byung‐Cheol Min
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1374-1390 被引量:37
标识
DOI:10.1109/tcds.2024.3357618
摘要

Human state recognition is a critical topic with pervasive and important applications in human-machine systems. Multi-modal fusion, which entails integrating metrics from various data sources, has proven to be a potent method for boosting recognition performance. Although recent multi-modal-based models have shown promising results, they often fall short in fully leveraging sophisticated fusion strategies essential for modeling adequate cross-modal dependencies in the fusion representation. Instead, they rely on costly and inconsistent feature crafting and alignment. To address this limitation, we propose an end-toend multi-modal transformer framework for multi-modal human state recognition called Husformer . Specifically, we propose using cross-modal transformers, which inspire one modality to reinforce itself through directly attending to latent relevance revealed in other modalities, to fuse different modalities while ensuring sufficient awareness of the cross-modal interactions introduced. Subsequently, we utilize a self-attention transformer to further prioritize contextual information in the fusion representation. Extensive experiments on two human emotion corpora (DEAP and WESAD) and two cognitive load datasets (MOCAS and CogLoad) demonstrate that in the recognition of the human state, our Husformer outperforms both state-of-the-art multi-modal baselines and the use of a single modality by a large margin, especially when dealing with raw multi-modal features. We also conducted an ablation study to show the benefits of each component in Husformer . Experimental details and source code are available at: https://github.com/SMARTlab-Purdue/Husformer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助泡面公主采纳,获得10
1秒前
1秒前
斯文败类应助羲月采纳,获得10
2秒前
wanci应助张美采纳,获得10
2秒前
2秒前
CipherSage应助liu_zt采纳,获得10
2秒前
Hello应助SJH采纳,获得10
3秒前
3秒前
3秒前
3秒前
kento发布了新的文献求助30
4秒前
4秒前
智多星发布了新的文献求助30
4秒前
cccc1111111完成签到,获得积分10
5秒前
fang发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
cmz_sherry发布了新的文献求助10
7秒前
7秒前
Hello应助qin123采纳,获得30
7秒前
LiangQixin完成签到,获得积分10
8秒前
哇wwwww发布了新的文献求助10
8秒前
vali完成签到,获得积分10
9秒前
年少有为作曲家完成签到,获得积分10
9秒前
田柾国发布了新的文献求助10
10秒前
炙热果汁发布了新的文献求助10
10秒前
10秒前
cccc1111111发布了新的文献求助10
10秒前
11秒前
Rehan完成签到 ,获得积分10
11秒前
隐形曼青应助LBM采纳,获得10
11秒前
12秒前
13秒前
13秒前
14秒前
orixero应助Ruan采纳,获得10
15秒前
天蓝的冬瓜完成签到,获得积分10
15秒前
祁尒完成签到,获得积分10
16秒前
帅气山晴发布了新的文献求助10
16秒前
455发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712794
求助须知:如何正确求助?哪些是违规求助? 5212274
关于积分的说明 15268761
捐赠科研通 4864595
什么是DOI,文献DOI怎么找? 2611574
邀请新用户注册赠送积分活动 1561846
关于科研通互助平台的介绍 1519118