A RAG-based Question Answering System Proposal for Understanding Islam: MufassirQAS LLM

答疑 透明度(行为) 无礼的 土耳其 计算机科学 背景(考古学) 伊斯兰教 聊天机器人 秩(图论) 互联网隐私 心理学 万维网 情报检索 语言学 历史 计算机安全 哲学 管理 考古 数学 组合数学 经济
作者
Ahmet Yusuf,Enis Karaarslan,Ömer Aydın
标识
DOI:10.36227/techrxiv.170723304.41988020/v2
摘要

Challenges exist in learning and understanding religions, such as the complexity and depth of religious doctrines and teachings. Chatbots as question-answering systems can help in solving these challenges. LLM chatbots use NLP techniques to establish connections between topics and accurately respond to complex questions. These capabilities make it perfect for enlightenment on religion as a question-answering chatbot. However, LLMs also tend to generate false information, known as hallucination. Also, the chatbots’ responses can include content that insults personal religious beliefs, interfaith conflicts, and controversial or sensitive topics. It must avoid such cases without promoting hate speech or offending certain groups of people or their beliefs. This study uses a vector database-based Retrieval Augmented Generation (RAG) approach to enhance the accuracy and transparency of LLMs. Our question-answering system is called “MufassirQAS”. We created a database consisting of several open-access books that include Turkish context. These books contain Turkish translations and interpretations of Islam. This database is utilized to answer religion-related questions and ensure our answers are trustworthy. The relevant part of the dataset, which LLM also uses, is presented along with the answer. We have put careful effort into creating system prompts that give instructions to prevent harmful, offensive, or disrespectful responses to respect people’s values and provide reliable results. The system answers and shares additional information, such as the page number from the respective book and the articles referenced for obtaining the information. MufassirQAS and ChatGPT are also tested with sensitive questions. We got better performance with our system. Study and enhancements are still in progress. Results and future works are given.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风吹而过关注了科研通微信公众号
刚刚
1秒前
1秒前
探索期完成签到,获得积分10
2秒前
2秒前
2秒前
chengwenyu发布了新的文献求助10
2秒前
爱睡午觉完成签到,获得积分10
3秒前
3秒前
3秒前
zyzhnu完成签到,获得积分10
3秒前
香蕉觅云应助宫野珏采纳,获得10
3秒前
4秒前
haoyunlai完成签到,获得积分10
4秒前
ZD完成签到 ,获得积分10
4秒前
科研通AI2S应助FloppyWow采纳,获得10
5秒前
Grayball完成签到,获得积分0
5秒前
MX应助研友_851KE8采纳,获得20
5秒前
windbroken发布了新的文献求助10
6秒前
科研通AI5应助12138采纳,获得10
6秒前
6秒前
Akim应助songf11采纳,获得10
7秒前
7秒前
7秒前
zho发布了新的文献求助10
7秒前
哎呀呀发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
情怀应助rubbertail采纳,获得10
9秒前
CipherSage应助羽翼采纳,获得10
9秒前
汉堡包应助阿士大夫采纳,获得10
9秒前
TN完成签到 ,获得积分10
10秒前
王计恩发布了新的文献求助10
10秒前
10秒前
失眠醉易完成签到,获得积分0
10秒前
10秒前
快乐小菜瓜完成签到 ,获得积分10
11秒前
华仔应助Gy采纳,获得10
11秒前
wanci应助天熙采纳,获得30
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838071
求助须知:如何正确求助?哪些是违规求助? 3380330
关于积分的说明 10513807
捐赠科研通 3099923
什么是DOI,文献DOI怎么找? 1707265
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772765