An ultrasound-based histogram analysis model for prediction of tumour stroma ratio in pleomorphic adenoma of the salivary gland

基质 多形性腺瘤 唾液腺 直方图 腺瘤 超声波 病理 医学 放射科 计算机科学 人工智能 免疫组织化学 图像(数学)
作者
Huan‐Zhong Su,Yuhui Wu,Long‐Cheng Hong,Kun Yu,Mei Huang,Yiming Su,Feng Zhang,Zuo-Bing Zhang,Xiaodong Zhang
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:53 (4): 222-232 被引量:1
标识
DOI:10.1093/dmfr/twae006
摘要

Abstract Objectives Preoperative identification of different stromal subtypes of pleomorphic adenoma (PA) of the salivary gland is crucial for making treatment decisions. We aimed to develop and validate a model based on histogram analysis (HA) of ultrasound (US) images for predicting tumour stroma ratio (TSR) in salivary gland PA. Methods A total of 219 PA patients were divided into low-TSR (stroma-low) and high-TSR (stroma-high) groups and enrolled in a training cohort (n = 151) and a validation cohort (n = 68). The least absolute shrinkage and selection operator regression algorithm was used to screen the most optimal clinical, US, and HA features. The selected features were entered into multivariable logistic regression analyses for further selection of independent predictors. Different models, including the nomogram model, the clinic-US (Clin + US) model, and the HA model, were built based on independent predictors using logistic regression. The performance levels of the models were evaluated and validated on the training and validation cohorts. Results Lesion size, shape, cystic areas, vascularity, HA_mean, and HA_skewness were identified as independent predictors for constructing the nomogram model. The nomogram model incorporating the clinical, US, and HA features achieved areas under the curve of 0.839 and 0.852 in the training and validation cohorts, respectively, demonstrating good predictive performance and calibration. Decision curve analysis and clinical impact curves further confirmed its clinical usefulness. Conclusions The nomogram model we developed offers a practical tool for preoperative TSR prediction in PA, potentially enhancing clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Fly完成签到 ,获得积分10
3秒前
彭鑫发布了新的文献求助10
5秒前
6秒前
半夏完成签到,获得积分10
6秒前
7秒前
田様应助豆子采纳,获得10
7秒前
jj完成签到,获得积分20
8秒前
10秒前
Auston_zhong应助青春采纳,获得10
12秒前
Samuel H Bian发布了新的文献求助10
12秒前
13秒前
领导范儿应助纯情的老黑采纳,获得10
13秒前
跳跃念寒发布了新的文献求助10
14秒前
Tomma完成签到,获得积分10
17秒前
何渡星舟完成签到 ,获得积分10
17秒前
英俊白莲发布了新的文献求助10
18秒前
陈成应助爱撞墙的猫采纳,获得10
18秒前
18秒前
科研通AI5应助万骛采纳,获得10
20秒前
20秒前
Samuel H Bian完成签到,获得积分10
20秒前
独特易形发布了新的文献求助10
22秒前
斯文败类应助Aurora采纳,获得10
23秒前
FashionBoy应助淡水痕采纳,获得30
25秒前
26秒前
28秒前
Vincey完成签到,获得积分10
34秒前
34秒前
36秒前
陈成应助TheQ采纳,获得20
37秒前
科研通AI5应助StonyinSICAU采纳,获得10
37秒前
dw平如淡菊完成签到,获得积分10
38秒前
39秒前
万骛发布了新的文献求助10
39秒前
40秒前
斯文败类应助跳跃念寒采纳,获得10
40秒前
40秒前
42秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829369
求助须知:如何正确求助?哪些是违规求助? 3372030
关于积分的说明 10470309
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701245
邀请新用户注册赠送积分活动 818327
科研通“疑难数据库(出版商)”最低求助积分说明 770830