SBCNet: Scale and Boundary Context Attention Dual-Branch Network for Liver Tumor Segmentation

背景(考古学) 计算机科学 分割 图像分割 核(代数) 计算机视觉 索贝尔算子 可扩展性 人工智能 模式识别(心理学) 机器学习 图像处理 图像(数学) 边缘检测 数学 数据库 生物 组合数学 古生物学
作者
Kai‐Ni Wang,S. Li,Zhenyu Bu,Fuxing Zhao,Guangquan Zhou,Shoujun Zhou,Yang Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2854-2865 被引量:12
标识
DOI:10.1109/jbhi.2024.3370864
摘要

Automated segmentation of liver tumors in CT scans is pivotal for diagnosing and treating liver cancer, offering a valuable alternative to labor-intensive manual processes and ensuring the provision of accurate and reliable clinical assessment. However, the inherent variability of liver tumors, coupled with the challenges posed by blurred boundaries in imaging characteristics, presents a substantial obstacle to achieving their precise segmentation. In this paper, we propose a novel dual-branch liver tumor segmentation model, SBCNet, to address these challenges effectively. Specifically, our proposed method introduces a contextual encoding module, which enables a better identification of tumor variability using an advanced multi-scale adaptive kernel. Moreover, a boundary enhancement module is designed for the counterpart branch to enhance the perception of boundaries by incorporating contour learning with the Sobel operator. Finally, we propose a hybrid multi-task loss function, concurrently concerning tumors' scale and boundary features, to foster interaction across different tasks of dual branches, further improving tumor segmentation. Experimental validation on the publicly available LiTS dataset demonstrates the practical efficacy of each module, with SBCNet yielding competitive results compared to other state-of-the-art methods for liver tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
凶凶完成签到,获得积分10
3秒前
大方芾完成签到,获得积分10
3秒前
赘婿应助无情石头采纳,获得10
3秒前
小二郎应助包容的跳跳糖采纳,获得30
4秒前
1111sss发布了新的文献求助10
5秒前
7秒前
大勺子发布了新的文献求助10
7秒前
海疼发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
12秒前
12秒前
慕青应助黄雅静采纳,获得50
13秒前
纪靖雁发布了新的文献求助10
13秒前
13秒前
niuniu完成签到,获得积分10
13秒前
开心快乐发大财完成签到,获得积分10
14秒前
DDAIDN完成签到,获得积分10
15秒前
15秒前
皮皮发布了新的文献求助10
15秒前
木象爱火锅完成签到,获得积分10
15秒前
16秒前
Loik完成签到,获得积分10
16秒前
18秒前
19秒前
Loik发布了新的文献求助10
19秒前
英俊的铭应助Math4396采纳,获得10
19秒前
20秒前
现代的东蒽完成签到,获得积分20
20秒前
20秒前
科研通AI5应助不下雨采纳,获得10
21秒前
22秒前
共享精神应助纪靖雁采纳,获得10
22秒前
22秒前
林钟望完成签到,获得积分10
22秒前
在水一方应助Qiao采纳,获得10
23秒前
科研通AI5应助糊涂的丹南采纳,获得10
24秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797685
求助须知:如何正确求助?哪些是违规求助? 3343169
关于积分的说明 10314824
捐赠科研通 3059896
什么是DOI,文献DOI怎么找? 1679129
邀请新用户注册赠送积分活动 806367
科研通“疑难数据库(出版商)”最低求助积分说明 763144