已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

What Are the Differences in Driver Lane-Changing Intention Models Recognition Performance Between Connected and Non-Connected Environments

计算机科学 人机交互
作者
Hongjia Zhang,Fuwei Wu,Dong Guo,Song Gao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:1
标识
DOI:10.1109/tits.2024.3358743
摘要

In the connected environment, traffic information sources become more heterogeneous, transforming vehicle-road information from static isolation to dynamic interconnection. Therefore, this work aims to examine the effects of the connected environment on Lane-Changing Intention (LCI). Firstly, a driving simulator experiment was designed to imitate the connected environment. Secondly, the LCI time window and feature parameters, including eye movement parameters, vehicle motion parameters, and driver operation parameters, were compared in connected and non-connected environments. The results demonstrated that the LCI time window was longer in the connected environment (6.6 s) than the non-connected environment (4.1 s). Moreover, the LCI feature parameters were significantly different between both environments. Finally, a novel driver LCI recognition model was developed for both environments. This involves utilizing phase space reconstruction and recurrence plot technology to convert time-series feature parameters into images. The swin transformer algorithm was then introduced to classify these images into lane-changing and lane-keeping. Comparing the LCI models in both environments showed no significant difference in model accuracy at 0.5 s before lane-changing maneuver. Interestingly, the model accuracy in the connected environment significantly outperforms that in the non-connected environment during the 2-4 s before lane-changing maneuver. In addition, the novel LCI model accuracy was 90.80% at 3 s before lane-changing maneuver, surpassing that of the traditional machine learning algorithm. To sum up, this research contributes to enhancing the accurate response of lane-changing assistance systems as well as the transfer control right between human and machine co-driving in the connected environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐发布了新的文献求助40
1秒前
量子星尘发布了新的文献求助50
2秒前
科研通AI2S应助静静采纳,获得10
5秒前
怕黑行恶完成签到,获得积分10
10秒前
14秒前
Haisenky发布了新的文献求助10
14秒前
17秒前
21秒前
程风破浪发布了新的文献求助10
28秒前
剑指东方是为谁应助Rita采纳,获得10
32秒前
wangermazi完成签到,获得积分0
32秒前
32秒前
完美世界应助xw采纳,获得10
34秒前
优雅夕阳完成签到 ,获得积分10
34秒前
impending完成签到,获得积分10
37秒前
37秒前
勤劳的熊猫完成签到,获得积分20
39秒前
真的不会完成签到,获得积分10
41秒前
41秒前
清新的小凝完成签到 ,获得积分10
42秒前
43秒前
桐桐完成签到,获得积分10
44秒前
45秒前
静静发布了新的文献求助10
48秒前
程风破浪完成签到,获得积分10
50秒前
从容甜瓜完成签到 ,获得积分10
52秒前
knight7m完成签到 ,获得积分10
53秒前
积极的尔白完成签到 ,获得积分10
56秒前
北海西贝完成签到,获得积分10
59秒前
科研木头人完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
sunny完成签到 ,获得积分20
1分钟前
缥缈雯发布了新的文献求助10
1分钟前
平常万言完成签到 ,获得积分10
1分钟前
1分钟前
hahhhah完成签到 ,获得积分10
1分钟前
静静完成签到,获得积分10
1分钟前
Joeswith完成签到,获得积分10
1分钟前
娜娜子完成签到 ,获得积分10
1分钟前
雅典的宠儿完成签到 ,获得积分10
1分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889224
求助须知:如何正确求助?哪些是违规求助? 3431468
关于积分的说明 10773892
捐赠科研通 3156457
什么是DOI,文献DOI怎么找? 1743120
邀请新用户注册赠送积分活动 841514
科研通“疑难数据库(出版商)”最低求助积分说明 785966