已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wavelet-Inspired Multi-channel Score-based Model for Limited-angle CT Reconstruction

小波 人工智能 模式识别(心理学) 迭代重建 计算机科学 小波变换 概率分布 采样(信号处理) 数学 算法 计算机视觉 统计 滤波器(信号处理)
作者
Jianjia Zhang,Haiyang Mao,Xinran Wang,Yuan Guo,Weiwen Wu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3436-3448 被引量:11
标识
DOI:10.1109/tmi.2024.3367167
摘要

Score-based generative model (SGM) has demonstrated great potential in the challenging limited-angle CT (LA-CT) reconstruction. SGM essentially models the probability density of the ground truth data and generates reconstruction results by sampling from it. Nevertheless, direct application of the existing SGM methods to LA-CT suffers multiple limitations. Firstly, the directional distribution of the artifacts attributing to the missing angles is ignored. Secondly, the different distribution properties of the artifacts in different frequency components have not been fully explored. These drawbacks would inevitably degrade the estimation of the probability density and the reconstruction results. After an in-depth analysis of these factors, this paper proposes a Wavelet-Inspired Score-based Model (WISM) for LA-CT reconstruction. Specifically, besides training a typical SGM with the original images, the proposed method additionally performs the wavelet transform and models the probability density in each wavelet component with an extra SGM. The wavelet components preserve the spatial correspondence with the original image while performing frequency decomposition, thereby keeping the directional property of the artifacts for further analysis. On the other hand, different wavelet components possess more specific contents of the original image in different frequency ranges, simplifying the probability density modeling by decomposing the overall density into component-wise ones. The resulting two SGMs in the image-domain and wavelet-domain are integrated into a unified sampling process under the guidance of the observation data, jointly generating high-quality and consistent LA-CT reconstructions. The experimental evaluation on various datasets consistently verifies the superior performance of the proposed method over the competing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
wjm发布了新的文献求助10
5秒前
jtyt完成签到,获得积分10
6秒前
汉堡包应助Li采纳,获得10
6秒前
SciGPT应助晴枫3648采纳,获得30
7秒前
小庾儿发布了新的文献求助10
8秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
mmh完成签到 ,获得积分10
11秒前
Xiao完成签到,获得积分20
11秒前
wuchun完成签到,获得积分10
14秒前
hull完成签到,获得积分10
14秒前
14秒前
殇璃完成签到,获得积分10
15秒前
16秒前
energyharvester完成签到 ,获得积分10
18秒前
温婉的老五完成签到,获得积分20
19秒前
Li发布了新的文献求助10
20秒前
浅笑安然完成签到,获得积分10
21秒前
殇璃发布了新的文献求助10
23秒前
852应助lily88采纳,获得10
23秒前
Rjy完成签到 ,获得积分10
24秒前
Xiao发布了新的文献求助20
27秒前
28秒前
31秒前
33秒前
桐桐应助明亮的苡采纳,获得10
34秒前
姜汁发布了新的文献求助10
34秒前
隐形曼青应助小庾儿采纳,获得10
36秒前
锅子关注了科研通微信公众号
37秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795349
求助须知:如何正确求助?哪些是违规求助? 3340342
关于积分的说明 10299816
捐赠科研通 3056888
什么是DOI,文献DOI怎么找? 1677300
邀请新用户注册赠送积分活动 805357
科研通“疑难数据库(出版商)”最低求助积分说明 762466