Co-Enhanced Global-Part Integration for Remote-Sensing Scene Classification

遥感 计算机科学 人工智能 地质学
作者
Yichen Zhao,Yaxiong Chen,Shengwu Xiong,Xiaoqiang Lu,Xiao Xiang Zhu,Lichao Mou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2024.3367877
摘要

Remote sensing (RS) scene classification aims to classify remote sensing images with similar scene characteristics into one category. Plenty of RS images are complex in background, rich in content, and multi-scale in target, exhibiting the characteristics of both intra-class separation and inter-class convergence. Therefore, discriminative feature representations designed to highlight the differences between classes are the key to RS scene classification. Existing methods represent scene images by extracting either global context or discriminative part features from RS images. However, global-based methods often lack salient details in similar RS scenes, while part-based methods tend to ignore the relationships between local ground objects, thus weakening the discriminative feature representation. In this paper, we propose to combine global context and part-level discriminative features within a unified framework called CGINet for accurate RS scene classification. To be specific, we develop a light context-aware attention block (LCAB) to explicitly model the global context to obtain larger receptive fields and contextual information. A co-enhanced loss module (CELM) is also devised to encourage the model to actively locate discriminative parts for feature enhancement. In particular, CELM is only used during training and not activated during inference, which introduces less computational cost. Benefiting from LCAB and CELM, our proposed CGINet improves the discriminability of features, thereby improving classification performance. Comprehensive experiments over four benchmark datasets show that the proposed method achieves consistent performance gains over state-of-the-art RS scene classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yizhii完成签到,获得积分20
1秒前
DXL完成签到,获得积分10
1秒前
1秒前
刘桔完成签到,获得积分10
1秒前
桐桐应助EMMA采纳,获得10
3秒前
pwh发布了新的文献求助10
3秒前
3秒前
wql完成签到,获得积分10
4秒前
上官若男应助流萤采纳,获得10
5秒前
怀玉发布了新的文献求助10
5秒前
7秒前
lin发布了新的文献求助10
7秒前
8秒前
FashionBoy应助pwh采纳,获得10
9秒前
11秒前
ky幻影发布了新的文献求助10
13秒前
局内人发布了新的文献求助10
13秒前
FashionBoy应助柒佑采纳,获得10
13秒前
平淡山柏应助十五采纳,获得10
13秒前
14秒前
现代的访曼应助SAINT采纳,获得20
14秒前
菲菲菲发布了新的文献求助10
15秒前
思源应助杏仁采纳,获得10
15秒前
海边的卡夫卡完成签到,获得积分20
15秒前
亚鹏完成签到,获得积分10
15秒前
16秒前
哒哒发布了新的文献求助10
17秒前
FashionBoy应助局内人采纳,获得10
18秒前
chanvze完成签到,获得积分10
18秒前
科目三应助sci一点就通采纳,获得10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
DuduWang完成签到,获得积分10
20秒前
ycc完成签到,获得积分10
20秒前
orixero应助唐盼烟采纳,获得10
20秒前
爱听歌咖啡关注了科研通微信公众号
21秒前
21秒前
zzz发布了新的文献求助30
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952910
求助须知:如何正确求助?哪些是违规求助? 3498351
关于积分的说明 11091687
捐赠科研通 3229027
什么是DOI,文献DOI怎么找? 1785170
邀请新用户注册赠送积分活动 869214
科研通“疑难数据库(出版商)”最低求助积分说明 801377