Comparing the Catalytic Effect of Metals for Energetic Materials: Machine Learning Prediction of Adsorption Energies on Metals

吸附 催化作用 离解(化学) 无机化学 金属 密度泛函理论 化学 硝酸铵 材料科学 物理化学 计算化学 冶金 有机化学
作者
Xiurong Yang,Jia Dang,Chi Zhang,Jiachen Li,Shiyao Niu,Hongxu Gao,Бо Лю,Zhaoqi Guo,Haixia Ma
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (1): 1087-1095 被引量:6
标识
DOI:10.1021/acs.langmuir.3c03348
摘要

Energetic materials (EMs) and metals are the important components of solid propellants, and a strong catalysis of metals on EMs could further enhance the combustion performance of solid propellants. Accordingly, the study on the adsorption of EMs such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and ammonium dinitramide (ADN) on metals (Ti, Zr, Fe, Ni, Cu, and Al) was carried out by density functional theory (DFT) to reveal the catalytic effect of metals. The deep dissociation of EMs on Ti and Zr represents a stronger interaction and corresponds to the rapid thermal decomposition behavior of the EMs/metal composite in the experiment. It is expected that DFT calculation can be selected instead of experiments to compare the catalytic effect of metals and preliminarily screen out potential high-performance metals. Based on the data set of the calculated adsorption energy, further machine learning (ML) was used to predict the adsorption energy of EMs on metals for a convenient comparison of the catalytic effect of metals, since a quite high adsorption energy value represents a more thorough dissociation. The kernel ridge regression (KRR) method shows the best performance on predicting adsorption energy and helps to choose the metals for efficiently catalyzing ammonium nitrate (AN) and hexanitrohexaazaisowurtzitane (CL-20). Such adsorption computation and ML not only reveal the decomposition mechanism of EMs on metals but also provide a simple underlying method to predict the catalytic effect of metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
稻草完成签到,获得积分10
3秒前
沥青拌蛋黄完成签到,获得积分10
3秒前
LostBicycle完成签到,获得积分20
4秒前
4秒前
彭于彦祖应助YY采纳,获得50
5秒前
上官若男应助ReiceChen采纳,获得10
5秒前
月游于海发布了新的文献求助10
6秒前
彭于彦祖应助Eva采纳,获得10
7秒前
7秒前
香蕉觅云应助机智的绝悟采纳,获得10
7秒前
八轩发布了新的文献求助10
7秒前
eco完成签到,获得积分10
7秒前
876365401应助123采纳,获得10
7秒前
CYT完成签到,获得积分10
7秒前
7秒前
科研八戒完成签到,获得积分10
8秒前
8秒前
8秒前
递年发布了新的文献求助20
9秒前
小二郎应助zzznznnn采纳,获得10
9秒前
9秒前
研友_LjDyNZ完成签到,获得积分10
9秒前
天天快乐应助痞老板采纳,获得10
9秒前
李爱国应助dm11采纳,获得10
10秒前
10秒前
科研通AI5应助dm11采纳,获得10
10秒前
科研通AI5应助dm11采纳,获得10
10秒前
爆米花应助dm11采纳,获得10
10秒前
慕青应助dm11采纳,获得10
10秒前
隐形曼青应助dm11采纳,获得10
10秒前
研友_VZG7GZ应助dm11采纳,获得10
10秒前
852应助dm11采纳,获得10
10秒前
英姑应助dm11采纳,获得10
10秒前
10秒前
隐形曼青应助dm11采纳,获得10
10秒前
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841240
求助须知:如何正确求助?哪些是违规求助? 3383270
关于积分的说明 10528888
捐赠科研通 3103224
什么是DOI,文献DOI怎么找? 1709200
邀请新用户注册赠送积分活动 822985
科研通“疑难数据库(出版商)”最低求助积分说明 773764