Synergizing traditional CT imaging with radiomics: a novel model for preoperative diagnosis of gastric neuroendocrine and mixed adenoneuroendocrine carcinoma

医学 无线电技术 逻辑回归 接收机工作特性 阶段(地层学) 放射科 神经内分泌肿瘤 内科学 古生物学 生物
作者
Xiaoxiao He,Su-Jun Yang,Jialiang Ren,Ning Wang,Min Li,Yang You,Yang Li,Yu Li,Gaofeng Shi,Yang Li
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1480466
摘要

Objective To develop diagnostic models for differentiating gastric neuroendocrine carcinoma (g-NEC) and gastric mixed adeno-neuroendocrine carcinoma (g-MANEC) from gastric adenocarcinoma (g-ADC) based on traditional contrast enhanced CT imaging features and radiomics features. Methods We retrospectively analyzed 90 g-(MA)NEC (g-MANEC and g-NEC) patients matched 1:1 by T-stage with 90 g-ADC patients. Traditional CT features were analyzed using univariable and multivariable logistic regression. Tumor segmentation and radiomics features extraction were performed with Slicer and PyRadiomics. Feature selection was conducted through univariable analysis, correlation analysis, LASSO, and multivariable stepwise logistic. The combined model incorporated clinical and radiomics predictors. Diagnostic performance was assessed with ROC curves and DeLong’s test. The models’ diagnostic efficacy was further validated in subgroup of g-NEC vs. g-ADC and g-MANEC vs. g-ADC cases. Results Tumor necrosis and lymph node metastasis were independent predictors for differentiating g-(MA)NEC from g-ADC ( P < 0.05). The clinical model’s AUC was 0.700 (training) and 0.667(validation). Five radiomics features were retained, with the radiomics model showing AUC of 0.809 (training) and 0.802 (validation). The combined model’s AUCs were 0.853 (training) and 0.812 (validation), significantly outperforming the clinical model ( P < 0.05). Subgroup analysis revealed that the combined model exhibited acceptable performance in differentiating g-NEC from g-ADC and g-MANEC from g-ADC, with AUC of 0.887 and 0.823 in the training cohort and 0.852 and 0.762 in the validation cohort. Conclusion A combined model based on traditional CT imaging and radiomic features provides a non-invasive and effective preoperative diagnostic method for differentiating g-(MA)NEC from g-ADC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
温婉的紫霜完成签到,获得积分10
刚刚
dada完成签到,获得积分10
1秒前
1秒前
喜悦兔子发布了新的文献求助10
2秒前
3秒前
自然访彤完成签到,获得积分10
3秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
4秒前
4秒前
5秒前
wysky37完成签到,获得积分10
5秒前
落后的小蕊完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
nmgfln发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助徐徐徐徐采纳,获得10
7秒前
7秒前
完美世界应助周俊俊采纳,获得10
8秒前
zjh完成签到,获得积分10
8秒前
8秒前
8秒前
AAA1798发布了新的文献求助10
8秒前
大模型应助re采纳,获得10
9秒前
wx发布了新的文献求助10
9秒前
陈明娃完成签到,获得积分10
9秒前
粗心小熊猫完成签到,获得积分10
10秒前
Darlene关注了科研通微信公众号
10秒前
cui发布了新的文献求助10
11秒前
CodeCraft应助干净惜蕊采纳,获得10
11秒前
PengHu发布了新的文献求助10
12秒前
12秒前
呆鸥完成签到,获得积分10
12秒前
爱听歌老1完成签到,获得积分10
13秒前
情怀应助胡江采纳,获得10
13秒前
13秒前
13秒前
懦弱的如蓉完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4022732
求助须知:如何正确求助?哪些是违规求助? 3562864
关于积分的说明 11340331
捐赠科研通 3294613
什么是DOI,文献DOI怎么找? 1814664
邀请新用户注册赠送积分活动 889369
科研通“疑难数据库(出版商)”最低求助积分说明 812889