Assessing the tumor immune landscape across multiple spatial scales to differentiate immunotherapy response in metastatic non-small cell lung cancer

免疫疗法 免疫系统 癌症 医学 肺癌 免疫学 生物 癌症研究 肿瘤科 内科学
作者
Ashley Tsang,Santhoshi Krishnan,Joel Eliason,Jake J. McGue,Angel Qin,Timothy L. Frankel,Arvind Rao
出处
期刊:Laboratory Investigation [Elsevier BV]
卷期号:104 (11): 102148-102148
标识
DOI:10.1016/j.labinv.2024.102148
摘要

Although immune checkpoint inhibitor-based therapy has shown promising results in non-small cell lung cancer patients with high programmed death-ligand 1 expression, not all patients respond to therapy. The tumor microenvironment (TME) is complex and heterogeneous, making it challenging to understand the key agents and features that influence response to therapies. In this study, we leverage multiplex fluorescent immunohistochemistry to quantitatively assess interactions between tumor and immune cells in an effort to identify patterns occurring at multiple spatial levels of the TME. To do so, we introduce several computational methods novel to a data set of 1,269 multiplex fluorescent immunohistochemistry images from a cohort of 52 patients with metastatic non-small cell lung cancer. With the spatial G-cross function, we quantify the degree of cell interaction at an entire image level, where we see significantly increased activity of cytotoxic T cells and helper T cells with epithelial tumor cells in responders to immune checkpoint inhibitor-based (P = .022 and P < .001, respectively) and decreased activity of T-regulatory cells with epithelial tumor cells compared with nonresponders (P = .010). By leveraging spatial overlap methods, we define tumor subregions (which we call the tumor "periphery," "edge." and "center") and discover more localized immune-immune interactions influencing positive response, including those between cytotoxic T cells and helper T cells with antigen presenting cells in these subregions specifically. Finally, we trained an interpretable deep learning model that identified key cellular regions of interest that most influenced response classification (area under the curve = 0.71 ± 0.02). Assessing spatial interactions within these subregions further revealed new insights that were not significant at the whole image level, particularly the elevated association of antigen presenting cells and T-regulatory cells with one another in responder groups (P = .024). Altogether, we demonstrate that elucidating patterns of cell composition and interplay across multiple levels of spatial analyses can improve our understanding of the TME and better differentiate patient responses to immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助宓鲂采纳,获得10
2秒前
小二郎应助山猪吃细糠采纳,获得10
3秒前
Owen应助龙傲天采纳,获得10
4秒前
Lshang完成签到,获得积分10
4秒前
5秒前
5秒前
liuzhanyu发布了新的文献求助10
6秒前
WF完成签到,获得积分10
8秒前
言亦云完成签到,获得积分10
9秒前
9秒前
LZJ完成签到,获得积分10
10秒前
lovence发布了新的文献求助10
11秒前
阿哇完成签到,获得积分10
11秒前
瀚霖发布了新的文献求助10
12秒前
liuzhanyu完成签到,获得积分10
12秒前
12秒前
14秒前
15秒前
16秒前
龙傲天发布了新的文献求助10
16秒前
李元堯的狗完成签到,获得积分10
17秒前
18秒前
nini完成签到,获得积分10
18秒前
迪迦发布了新的文献求助10
19秒前
mhh发布了新的文献求助10
20秒前
20秒前
21秒前
wangxiaobin发布了新的文献求助10
23秒前
fbwg发布了新的文献求助10
23秒前
23秒前
Cambridge完成签到,获得积分10
27秒前
27秒前
欣欣发布了新的文献求助10
27秒前
xiaoliume完成签到,获得积分10
28秒前
28秒前
拓片完成签到,获得积分20
28秒前
30秒前
31秒前
fbwg完成签到 ,获得积分10
31秒前
柴郡喵完成签到,获得积分10
31秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472