Establishment of prognostic model for invasive ductal carcinoma with distant metastasis within the triple-negative breast cancer: a SEER population-based study

列线图 医学 肿瘤科 内科学 转移 比例危险模型 乳腺癌 多元分析 脑转移 三阴性乳腺癌 单变量分析 癌症
作者
Minghao Yang,C. Wang,Lu Ouyang,Haowen Zhang,Junlong Lin
出处
期刊:European Journal of Cancer Prevention [Lippincott Williams & Wilkins]
标识
DOI:10.1097/cej.0000000000000925
摘要

Triple-negative breast cancer (TNBC) is a complex and diverse group of malignancies. Invasive ductal carcinoma (IDC) is the predominant pathological subtype and is closely linked to the ominous potential for distant metastasis, a pivotal factor that significantly influences patient outcomes. In light of these considerations, the present study was conceived with the objective of developing a nomogram model. This model was designed to predict the prognosis observed in IDC with distant metastasis in TNBC. This was a retrospective study based on the SEER database. Data of 9739 IDC-TNBC patients diagnosed from 2010 to 2020 were included in our study. Independent risk factors were screened by univariate and multivariate Cox regression analyses successively, which were used to develop a nomogram model predicting for prognosis. Cox multivariable analysis showed statistical significance in bone metastasis, liver metastasis, surgery, and chemotherapy. Incorporating statistically significant variables, as well as clinically significant age, lung metastasis, and brain metastasis into the construction of the prediction model, the C-indexes of the training group and validation group were 0.702 (0.663–0.741) and 0.667 (0.600–0.734), respectively, while the calibration curves were all close to the ideal 45° reference line, and decision curve analysis curves show excellent net benefit in the predictive model. The prognostic prediction model developed in this study demonstrated enhanced predictive accuracy, enabling a more precise evaluation of mortality risks associated with IDC with distant metastasis in TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小陆发布了新的文献求助10
2秒前
3秒前
奴貌发布了新的文献求助10
4秒前
123关闭了123文献求助
4秒前
SciGPT应助闪闪的觅云采纳,获得30
5秒前
1111111发布了新的文献求助10
5秒前
8秒前
科研通AI5应助勤劳的筝采纳,获得150
8秒前
可乐发布了新的文献求助10
9秒前
xfy发布了新的文献求助30
12秒前
12秒前
乐乐应助悲伤西米露采纳,获得10
13秒前
15秒前
15秒前
隐形曼青应助小陆采纳,获得10
15秒前
可爱的函函应助叶子采纳,获得10
16秒前
善学以致用应助JJbond采纳,获得10
17秒前
梓枫发布了新的文献求助10
17秒前
Millennial完成签到,获得积分10
17秒前
我是能跌发布了新的文献求助10
18秒前
18秒前
现实的行云完成签到,获得积分20
19秒前
Derek完成签到,获得积分0
20秒前
科研通AI5应助希夷采纳,获得10
21秒前
欣慰扬发布了新的文献求助10
21秒前
NexusExplorer应助IF>100采纳,获得10
22秒前
丘比特应助寒冷的咖啡采纳,获得10
22秒前
烊烊坨完成签到,获得积分10
23秒前
25秒前
萨柏斯塔完成签到,获得积分10
26秒前
27秒前
JJbond发布了新的文献求助10
28秒前
传奇3应助慕容听白采纳,获得10
29秒前
彦嘉发布了新的文献求助30
32秒前
32秒前
从容飞阳完成签到,获得积分10
32秒前
CodeCraft应助怿愀采纳,获得10
34秒前
Akim应助叫滚滚采纳,获得10
38秒前
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810579
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10374243
捐赠科研通 3071730
什么是DOI,文献DOI怎么找? 1687057
邀请新用户注册赠送积分活动 811396
科研通“疑难数据库(出版商)”最低求助积分说明 766644