亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Correlation-aware Cross-modal Attention Network for Fashion Compatibility Modeling in UGC Systems

计算机科学 相容性(地球化学) 情态动词 相关性 计算机网络 人机交互 几何学 地球化学 数学 地质学 化学 高分子化学
作者
Kai Cui,Shenghao Liu,Wei Feng,Xianjun Deng,Liangbin Gao,Minmin Cheng,Hongwei Lu,Laurence T. Yang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3698772
摘要

Empowered by the continuous integration of social multimedia and artificial intelligence, the application scenarios of information retrieval (IR) progressively tend to be diversified and personalized. Currently, User-Generated Content (UGC) systems have great potential to handle the interactions between large-scale users and massive media contents. As an emerging multimedia IR, Fashion Compatibility Modeling (FCM) aims to predict the matching degree of each given outfit and provide complementary item recommendation for user queries. Although existing studies attempt to explore the FCM task from a multimodal perspective with promising progress, they still fail to fully leverage the interactions between multimodal information or ignore the item-item contextual connectivities of intra-outfit. In this paper, a novel fashion compatibility modeling scheme is proposed based on Correlation-aware Cross-modal Attention Network. To better tackle these issues, our work mainly focuses on enhancing comprehensive multimodal representations of fashion items by integrating the cross-modal collaborative contents and uncovering the contextual correlations. Since the multimodal information of fashion items can deliver various semantic clues from multiple aspects, a modality-driven collaborative learning module is presented to explicitly model the interactions of modal consistency and complementarity via a co-attention mechanism. Considering the rich connections among numerous items in each outfit as contextual cues, a correlation-aware information aggregation module is further designed to adaptively capture significant intra-correlations of item-item for characterizing the content-aware outfit representations. Experiments conducted on two real-world fashion datasets demonstrate the superiority of our approach over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉外套完成签到,获得积分20
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
9秒前
研友_EZ1oWL完成签到 ,获得积分20
12秒前
多边棱发布了新的文献求助10
15秒前
科研通AI5应助小米辣采纳,获得10
1分钟前
白色的猫猫完成签到,获得积分10
1分钟前
1分钟前
mmmio应助未解的波采纳,获得20
1分钟前
1分钟前
火星完成签到 ,获得积分10
1分钟前
1分钟前
多边棱发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
牛八先生完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
多边棱发布了新的文献求助10
3分钟前
3分钟前
碗碗完成签到,获得积分10
4分钟前
4分钟前
Lucas应助yzbbb采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
yzbbb发布了新的文献求助10
5分钟前
5分钟前
arsenal发布了新的文献求助10
6分钟前
精明凡双应助科研通管家采纳,获得20
6分钟前
艺_完成签到 ,获得积分10
6分钟前
懒得取名字完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
随机科研完成签到,获得积分20
6分钟前
苏梗完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
随机科研发布了新的文献求助30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4653202
求助须知:如何正确求助?哪些是违规求助? 4039831
关于积分的说明 12494473
捐赠科研通 3730542
什么是DOI,文献DOI怎么找? 2059222
邀请新用户注册赠送积分活动 1089908
科研通“疑难数据库(出版商)”最低求助积分说明 971009