Integrating Metal–Phenolic Networks-Mediated Separation and Machine Learning-Aided Surface-Enhanced Raman Spectroscopy for Accurate Nanoplastics Quantification and Classification

拉曼光谱 材料科学 人工智能 拉曼散射 激光诱导击穿光谱 鉴定(生物学) 聚苯乙烯 机器学习 纳米技术 生物系统 计算机科学 光谱学 复合材料 物理 光学 聚合物 植物 生物 量子力学
作者
Haoxin Ye,Shiyu Jiang,Yan Yan,Bin Zhao,Edward R. Grant,David D. Kitts,Rickey Y. Yada,Anubhav Pratap‐Singh,Alberto Baldelli,Tianxi Yang
出处
期刊:ACS Nano [American Chemical Society]
被引量:27
标识
DOI:10.1021/acsnano.4c08316
摘要

Increasing accumulation of nanoplastics across ecosystems poses a significant threat to both terrestrial and aquatic life. Surface-enhanced Raman scattering (SERS) is an emerging technique used for nanoplastics detection. However, the identification and classification of nanoplastics using SERS faces challenges regarding sensitivity and accuracy as nanoplastics are sparsely dispersed in the environment. Metal-phenolic networks (MPNs) have the potential to rapidly concentrate and separate various types and sizes of nanoplastics. SERS combined with machine learning may improve prediction accuracy. Herein, we report the integration of MPNs-mediated separation with machine learning-aided SERS methods for the accurate classification and high-precision quantification of nanoplastics, which is tailored to include the complete region of characteristic peaks across diverse nanoplastics in contrast to the traditional manual analysis of SERS spectra on a singular characteristic peak. Our customized machine learning system (e.g., outlier detection, classification, quantification) allows for the identification of detectable nanoplastics (accuracy 81.84%), accurate classification (accuracy > 97%), and sensitive quantification of various types of nanoplastics (polystyrene (PS), poly(methyl methacrylate) (PMMA), polyethylene (PE), and poly(lactic acid) (PLA)) down to ultralow concentrations (0.1 ppm) as well as accurate classification (accuracy > 92%) of nanoplastic mixtures at a subppm level. The effectiveness of this approach is substantiated by its ability to discern between different nanoplastic mixtures and detect nanoplastic samples in natural water systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VickyS发布了新的文献求助10
刚刚
2秒前
1234完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
木子完成签到,获得积分10
3秒前
点点点完成签到 ,获得积分10
4秒前
优美紫槐应助Yuanyuan采纳,获得10
5秒前
April发布了新的文献求助10
6秒前
guo发布了新的文献求助10
6秒前
科研aaa完成签到,获得积分10
7秒前
ZXH发布了新的文献求助10
7秒前
便当发布了新的文献求助20
8秒前
夏侯绮山发布了新的文献求助10
9秒前
ljact完成签到,获得积分0
9秒前
9秒前
Jimmy Ko完成签到,获得积分10
9秒前
平常的班完成签到,获得积分10
10秒前
路卡利欧发布了新的文献求助10
10秒前
10秒前
Jimmy Ko发布了新的文献求助10
12秒前
田田完成签到 ,获得积分10
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
烟花应助逍遥游采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得30
13秒前
Hello应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得30
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365