柠檬酸循环
三羧酸
机制(生物学)
基因
化学
生物
生物化学
细胞生物学
新陈代谢
认识论
哲学
作者
Samta Veera,Fan Tang,Youssef Mourad,Samuel Kim,Tong Liu,Hong Li,Yunjue Wang,Junco S. Warren,Jiyeon Park,C. Nguyen Van,Junichi Sadoshima,Shin-ichi Oka
标识
DOI:10.1016/j.jbc.2024.107677
摘要
The tricarboxylic acid (TCA) cycle plays a crucial role in mitochondrial ATP production in the healthy heart. However, in heart failure, the TCA cycle becomes dysregulated. Understanding the mechanism by which TCA cycle genes are transcribed in the healthy heart is an important prerequisite to understanding how these genes become dysregulated in the failing heart. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator that broadly induces genes involved in mitochondrial ATP production. PGC-1α potentiates its effects through the coactivation of coupled transcription factors, such as estrogen-related receptor (ERR), nuclear respiratory factor 1 (Nrf1), GA-binding protein-a (Gabpa), and Yin Yang 1 (YY1). We hypothesized that PGC-1α plays an essential role in the transcription of TCA cycle genes. Thus, utilizing localization peaks of PGC-1α to TCA cycle gene promoters would allow the identification of coupled transcription factors. PGC-1α potentiated the transcription of 13 out of 14 TCA cycle genes, partly through ERR, Nrf1, Gabpa, and YY1. ChIP-sequencing showed PGC-1α localization peaks in TCA cycle gene promoters. Transcription factors with binding elements that were found proximal to PGC-1α peak localization were generally essential for the transcription of the gene. These transcription factor binding elements were well conserved between mice and humans. Among the four transcription factors, ERR and Gabpa played a major role in potentiating transcription when compared to Nrf1 and YY1. These transcription factor-dependent PGC-1α recruitment was verified with Idh3a, Idh3g, and Sdha promoters with DNA binding assay. Taken together, this study clarifies the mechanism by which TCA cycle genes are transcribed, which could be useful in understanding how those genes are dysregulated in pathological conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI