Entropy-Driven Nucleic Acid Amplifier Based on Spatial Confinement as a “Booster” for Detection of Extracellular Vesicle MicroRNAs to Diagnose Gastric Cancer and Monitor Therapeutic Response

作者
Yaokun Xia,Li Guo,Ze-Ning Huang,Xiao Li,Xueling Liu,Su Zeng,Yingcong Fan,Jiayi Yin
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (46): 25782-25796
标识
DOI:10.1021/acs.analchem.5c05375
摘要

Gastric cancer (GC) continues to pose a significant global health burden with persistent diagnostic challenges, especially in the detection of early-stage GC. Herein, a strand displacement reaction-mediated nucleic acid amplifier based on the spatial confinement (SC-SDR) effect as a "booster" is constructed to detect extracellular vesicle-derived microRNAs (EVs-miRNAs). Constraining the reactant and fuel strands in a limited space using a T-shaped DNA structure results in a significant improvement in the reaction kinetics and sensitivity because of the high local strand concentrations, ultimately enabling the detection of EVs-miRNAs at the femtomolar level. SC-SDR is conjugated onto a hydrophobic tether to aid delivery into EVs, allowing for the in situ detection of EVs-miRNAs. Four EVs-miRNAs act as biomarkers in combination with a random forest (RF) algorithm for use in GC diagnostics, prognostics, and early warning. In a cohort of 58 patients with GC, this diagnostic model effectively identifies 51 of the 58 cases, showing a satisfactory accuracy of 87.93%. This diagnostic efficiency outperforms that of conventional biomarkers (CEA and CA19-9), which exhibit accuracies of only 25.86% (15/58) and 17.24% (10/58), respectively. The longitudinal analysis of EVs-miRNA expression in GC patients before and after surgery and in patients with gastric intraepithelial neoplasia (GIN) reveals the dual utility of this approach as both a robust prognostic biomarker for GC progression and a promising predictive marker for GIN development. Overall, this study highlights the combined power of SC-SDR and machine learning for the analysis of EVs-miRNAs, paving the way for the clinical diagnosis and prognostication of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小启发布了新的文献求助10
刚刚
成xy123_发布了新的文献求助10
1秒前
hehexi发布了新的文献求助10
2秒前
Owen应助嘿嘿哒采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
蒋瑞轩发布了新的文献求助10
4秒前
传奇3应助小莱采纳,获得10
4秒前
4秒前
xldongcn发布了新的文献求助10
4秒前
李李李子发布了新的文献求助10
4秒前
SciGPT应助yvonne采纳,获得10
5秒前
6秒前
7秒前
9秒前
石土土完成签到,获得积分10
9秒前
周明明发布了新的文献求助10
9秒前
苗玉发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
11秒前
11秒前
hujin发布了新的文献求助10
11秒前
11秒前
liuf发布了新的文献求助10
11秒前
12秒前
蒋瑞轩完成签到,获得积分10
12秒前
yznfly举报tyyldr2015求助涉嫌违规
12秒前
12秒前
石土土发布了新的文献求助10
13秒前
14秒前
14秒前
xxl发布了新的文献求助10
15秒前
YE发布了新的文献求助10
15秒前
嘿嘿哒发布了新的文献求助10
15秒前
15秒前
15秒前
JUSTDOIT发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851