Integrative Multi‐Omics Analysis Prioritizes Candidate Genes for Essential Tremor and Reveals a Gap Between Computational Prediction and Experimental Validation

作者
Aishanjiang Yusufujiang,Shan Zeng,Likun Xu,Li Gong,Zebin Wang,Hongyan Li
出处
期刊:Movement Disorders [Wiley]
标识
DOI:10.1002/mds.70101
摘要

Abstract Background The genetic architecture of essential tremor (ET) remains incompletely understood. A key challenge is translating genome‐wide association study (GWAS) loci into specific effector genes to elucidate disease mechanisms and develop targeted therapies. Objective To implement a multistage computational framework to prioritize high‐confidence candidate genes for ET and to assess these predictions against publicly available, patient‐derived transcriptomic data. Methods We employed a convergent evidence strategy to prioritize genes, integrating cross‐tissue (UTMOST) and tissue‐specific (FUSION) transcriptome‐wide association studies (TWAS) with gene‐based association tests (MAGMA). Prioritized genes were subjected to causal inference analyses (summary‐data‐based Mendelian randomization [SMR] and colocalization), co‐expression network analysis (GeneMANIA), and pharmacogenomic analysis (DGIdb). We leveraged spatial transcriptomics to characterize gene expression patterns across cortical layers and cell types. Finally, we validated computational predictions using two independent post‐mortem brain datasets from ET patients and controls. Results Our prioritization pipeline identified 12 high‐confidence candidate genes. Co‐expression network analysis revealed 83.3% of candidates exhibit functional relationships, forming three modules centered on RNA processing ( NRBP1 ), metabolic regulation ( SLC5A6 ), and nucleotide synthesis ( CAD ). Pharmacogenomic analysis demonstrated 66.7% of candidates possess therapeutic target potential. Spatial transcriptomics revealed preferential expression in cortical Layer 5 pyramidal neurons. However, validation in post‐mortem cerebellar tissue showed no significant differential expression. Conclusions Our study provides a robust pipeline for ET gene prioritization and puts forward a novel cortical hypothesis for the disease. The discordance between strong computational predictions and their lack of validation in available patient tissue highlights a critical gap in the field. © 2025 International Parkinson and Movement Disorder Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bismarck完成签到,获得积分10
刚刚
fan发布了新的文献求助10
刚刚
1秒前
帅气善斓发布了新的文献求助10
1秒前
abb完成签到 ,获得积分10
1秒前
jiaozitop完成签到,获得积分10
1秒前
着急的雨雪完成签到,获得积分10
1秒前
kkk应助jxxyzm采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
无花果应助无心的紫菜采纳,获得10
2秒前
2秒前
木林森幻完成签到,获得积分10
3秒前
半农应助上山的吗喽采纳,获得50
3秒前
赵小胖完成签到,获得积分10
3秒前
张德帅完成签到,获得积分10
3秒前
健康的人生完成签到,获得积分10
3秒前
shen发布了新的文献求助30
3秒前
胡大嘴先生完成签到,获得积分10
4秒前
ada完成签到,获得积分10
4秒前
F123456完成签到,获得积分10
4秒前
4秒前
le完成签到,获得积分10
4秒前
4秒前
时长两年半完成签到,获得积分10
5秒前
kkk12245完成签到,获得积分20
5秒前
儒雅的山河完成签到 ,获得积分10
5秒前
5秒前
LWJ发布了新的文献求助10
5秒前
千空完成签到 ,获得积分10
5秒前
6秒前
E1gb发布了新的文献求助50
6秒前
要减肥的小馒头完成签到 ,获得积分10
6秒前
gfydsl发布了新的文献求助10
7秒前
7秒前
7秒前
一颗咸蛋黄完成签到 ,获得积分10
7秒前
zty完成签到,获得积分10
7秒前
8秒前
纳斯达克完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651723
求助须知:如何正确求助?哪些是违规求助? 4785782
关于积分的说明 15055712
捐赠科研通 4810402
什么是DOI,文献DOI怎么找? 2573132
邀请新用户注册赠送积分活动 1529020
关于科研通互助平台的介绍 1488014