Engineering grain boundaries in monolayer molybdenum disulfide for an efficient water/ion separation

材料科学 单层 渗透 晶界 化学工程 二硫化钼 海水淡化 成核 纳米技术 化学 复合材料 有机化学 渗透 生物化学 微观结构 工程类
作者
Yu Han,Jie Shen,Areej Aljarb,Yichen Cai,Xing Liu,Jiacheng Min,Yingge Wang,Chenhui Zhang,Cailing Chen,Mariam Hakami,Jui‐Han Fu,Hui Zhang,Guanxing Li,Xiaoqian Wang,Zhuo Chen,Jiaqiang Li,Xinglong Dong,Vincent Tung,Guosheng Shi,Ingo Pinnau
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-2630063/v1
摘要

Abstract Atomically thin two-dimensional (2D) materials have long been considered as ideal platforms for developing separation membranes. However, it is difficult to generate uniform subnanometer pores over large areas on 2D materials. Herein, we report that the well-defined defect structure of monolayer MoS 2 , namely, eight-membered ring (8-MR) pores typically formed at the boundaries of two antiparallel grains, can serve as molecular sieves for efficient water/ion separation. The 8-MR pores (4.2 × 2.4 Å) in monolayer MoS 2 allow rapid single-file water transport while rejecting various hydrated ions. Further, the density of grain boundaries and, consequently, the density of pores can be tuned by regulating the nucleation density and size of MoS 2 grains during the chemical vapor deposition process. The optimized MoS 2 membrane exhibited an ultrahigh water/NaCl selectivity of ~6.5 × 10 4 at a water permeance of 232 mol m −2 h −1 bar −1 , outperforming the state-of-the-art desalination membranes. When used for direct hydrogen production from seawater by combining the forward osmosis and electrochemical water splitting processes, the membrane achieved ~40 times the energy conversion efficiency of commercial polymeric membranes. It also exhibited a rapid and selective proton transport behavior desirable for fuel cells and electrolysis. The bottom-up approach of creating precise pore structures on atomically thin films via grain boundary engineering presents a promising route for producing large-area membranes suitable for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
S飞完成签到 ,获得积分10
1秒前
核桃酥完成签到,获得积分10
1秒前
ycccccc完成签到 ,获得积分10
3秒前
深情安青应助mariawang采纳,获得200
4秒前
刘刘完成签到,获得积分10
4秒前
xuanxuan完成签到 ,获得积分10
6秒前
科研通AI5应助stitch采纳,获得10
6秒前
铃儿响叮当完成签到,获得积分20
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
雨夜星空应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
平淡井应助科研通管家采纳,获得20
8秒前
慕青应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
冰魂应助科研通管家采纳,获得20
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
iNk应助科研通管家采纳,获得20
8秒前
hywel应助科研通管家采纳,获得30
8秒前
ThreeAct6完成签到,获得积分10
9秒前
哭泣灯泡完成签到,获得积分10
10秒前
11秒前
CC完成签到,获得积分10
13秒前
13秒前
852应助AA采纳,获得10
14秒前
简单发布了新的文献求助10
14秒前
ShengjuChen完成签到 ,获得积分10
14秒前
碧蓝可仁完成签到 ,获得积分10
15秒前
osel发布了新的文献求助10
18秒前
19秒前
21秒前
stitch完成签到,获得积分10
23秒前
osel完成签到,获得积分10
24秒前
24秒前
阿郎发布了新的文献求助10
24秒前
NexusExplorer应助meimei采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893