清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A generalisation of the method of regression calibration

外推法 校准 统计 曲率 回归 数学 人口 二次方程 线性回归 计量经济学 计算机科学 医学 几何学 环境卫生
作者
Mark P. Little,Nobuyuki Hamada,Lydia B. Zablotska
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:4
标识
DOI:10.1038/s41598-023-42283-y
摘要

There is direct evidence of risks at moderate and high levels of radiation dose for highly radiogenic cancers such as leukaemia and thyroid cancer. For many cancer sites, however, it is necessary to assess risks via extrapolation from groups exposed at moderate and high levels of dose, about which there are substantial uncertainties. Crucial to the resolution of this area of uncertainty is the modelling of the dose-response relationship and the importance of both systematic and random dosimetric errors for analyses in the various exposed groups. It is well recognised that measurement error can alter substantially the shape of this relationship and hence the derived population risk estimates. Particular attention has been devoted to the issue of shared errors, common in many datasets, and particularly important in occupational settings. We propose a modification of the regression calibration method which is particularly suited to studies in which there is a substantial amount of shared error, and in which there may also be curvature in the true dose response. This method can be used in settings where there is a mixture of Berkson and classical error. In fits to synthetic datasets in which there is substantial upward curvature in the true dose response, and varying (and sometimes substantial) amounts of classical and Berkson error, we show that the coverage probabilities of all methods for the linear coefficient [Formula: see text] are near the desired level, irrespective of the magnitudes of assumed Berkson and classical error, whether shared or unshared. However, the coverage probabilities for the quadratic coefficient [Formula: see text] are generally too low for the unadjusted and regression calibration methods, particularly for larger magnitudes of the Berkson error, whether this is shared or unshared. In contrast Monte Carlo maximum likelihood yields coverage probabilities for [Formula: see text] that are uniformly too high. The extended regression calibration method yields coverage probabilities that are too low when shared and unshared Berkson errors are both large, although otherwise it performs well, and coverage is generally better than these other three methods. A notable feature is that for all methods apart from extended regression calibration the estimates of the quadratic coefficient [Formula: see text] are substantially upwardly biased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHH发布了新的文献求助10
28秒前
kk2024完成签到,获得积分10
48秒前
1分钟前
小飞在学习呢完成签到 ,获得积分20
1分钟前
紫熊发布了新的文献求助20
1分钟前
1分钟前
dlm关闭了dlm文献求助
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
Chen完成签到 ,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
紫熊发布了新的文献求助10
2分钟前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助ZHH采纳,获得10
2分钟前
紫熊发布了新的文献求助20
3分钟前
翁雁丝完成签到 ,获得积分10
3分钟前
定西完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
我是老大应助HS采纳,获得10
3分钟前
3分钟前
嘟嘟52edm完成签到 ,获得积分10
3分钟前
优雅山柏发布了新的文献求助10
3分钟前
tianshanfeihe完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
HS发布了新的文献求助10
4分钟前
xwl9955完成签到 ,获得积分10
4分钟前
naczx完成签到,获得积分0
4分钟前
正直的夏真完成签到 ,获得积分10
5分钟前
方白秋完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
jqliu发布了新的文献求助10
6分钟前
优雅山柏发布了新的文献求助10
6分钟前
Ava应助科研通管家采纳,获得10
6分钟前
7分钟前
yi完成签到 ,获得积分10
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837511
求助须知:如何正确求助?哪些是违规求助? 3379609
关于积分的说明 10509995
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772597