A dual surrogate assisted evolutionary algorithm based on parallel search for expensive multi/many-objective optimization

计算机科学 进化算法 水准点(测量) 数学优化 多目标优化 替代模型 对偶(语法数字) 集合(抽象数据类型) 最优化问题 算法 人工智能 机器学习 数学 艺术 文学类 程序设计语言 地理 大地测量学
作者
Jiangtao Shen,Peng Wang,Ye Tian,Huachao Dong
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:148: 110879-110879 被引量:3
标识
DOI:10.1016/j.asoc.2023.110879
摘要

Numerous optimization problems in the real world involve multi-objective and computationally expensive simulations (i.e., expensive multi-objective optimization problems). This paper purposes a dual surrogates-assisted evolutionary algorithm (SAEA) based on parallel search, termed DSAEA-PS, for this issue. Approximation and classification are two main implementation forms of surrogate models, but the existing methods of expensive multi-objective optimization only apply one kind of them, and scarce works have paid attention to combining approximation and classification to improve the optimization performance. In the proposed algorithm, to enhance the prediction accuracy and reliability, both the approximation model and classification model are applied to cooperate to provide the quality and uncertainty information of candidate solutions. Meanwhile, the parallel search based on heterogeneous multi-objective evolutionary algorithms is introduced for better exploration of the decision space. In addition, combined with the strengthened dominance relation (SDR), a sampling strategy that comprehensively considers the quality of candidate solutions and their uncertainty information is proposed. Experimental results with five peer competitors on a set of widely-used benchmark problems demonstrate the ability of DSAEA-PS. Furthermore, DSAEA-PS is adopted for a five-objective blended-wing-body underwater glider design problem that involves time-consuming simulations of fluid dynamics and structural strength. A series of high-performance solutions obtained from DSAEA-PS verifies its effectiveness on engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大成子完成签到,获得积分10
1秒前
xiaohan发布了新的文献求助10
2秒前
2秒前
称心曼安应助wangxiaoli0991采纳,获得10
3秒前
clkzhx完成签到,获得积分10
4秒前
淡然子轩发布了新的文献求助10
4秒前
6秒前
zuofighting发布了新的文献求助10
6秒前
坦率抽屉完成签到 ,获得积分10
8秒前
8秒前
pluto应助艺善艺善亮晶晶采纳,获得50
11秒前
wanci应助落寞臻采纳,获得10
11秒前
12秒前
12秒前
tingalan完成签到,获得积分10
12秒前
14秒前
15秒前
hatoyama发布了新的文献求助30
16秒前
明天见完成签到,获得积分10
16秒前
jason完成签到,获得积分10
17秒前
19秒前
21秒前
雷家完成签到,获得积分10
21秒前
21秒前
孝铮完成签到 ,获得积分10
22秒前
无辜问枫发布了新的文献求助10
25秒前
hatoyama完成签到,获得积分10
28秒前
科目三应助干羞花采纳,获得10
33秒前
科目三应助zuofighting采纳,获得10
34秒前
调皮的凝竹完成签到,获得积分10
35秒前
椰椰完成签到 ,获得积分10
35秒前
36秒前
xin完成签到,获得积分10
38秒前
无辜问枫完成签到,获得积分10
41秒前
41秒前
M跃完成签到,获得积分10
42秒前
43秒前
腼腆的傲薇完成签到 ,获得积分10
45秒前
赘婿应助佳仔采纳,获得10
46秒前
chenjunan发布了新的文献求助10
47秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825763
求助须知:如何正确求助?哪些是违规求助? 3367969
关于积分的说明 10448566
捐赠科研通 3087423
什么是DOI,文献DOI怎么找? 1698676
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973