亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cluster-Instance Normalization: A Statistical Relation-Aware Normalization for Generalizable Person Re-Identification

规范化(社会学) 计算机科学 人工智能 关系(数据库) 鉴定(生物学) 数据挖掘 星团(航天器) 机器学习 模式识别(心理学) 植物 社会学 生物 人类学 程序设计语言
作者
Zining Chen,Weiqiu Wang,Zhicheng Zhao,Fei Su,Aidong Men,Yuan Dong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3554-3566 被引量:14
标识
DOI:10.1109/tmm.2023.3312939
摘要

Person re-identification (ReID) has achieved great improvement under supervised settings, but suffers from considerable degradation when large distribution shifts between training and testing sets exist. Domain generalization (DG ReID) emerges to promote the generalization ability of models, overcoming the distribution shifts issue between source domains and unseen target domains. Among most prior methods in DG ReID, instance normalization (IN) serves as a promising solution for removing domain-specific information, however, it damages the discriminative ability simultaneously. In this article, we propose a new normalization method called Cluster-Instance Normalization (CINorm) to extract information from clusters for information compensation. The relations between samples in a batch can be mined to establish evolving clusters with aggregated samples during the forward training process. In this way, high intra-cluster congregation can eliminate the impacts of outliers to avoid overfitting, and high inter-cluster variances can synthesize diverse novel statistics to compensate discriminative information. Therefore, a Relation-Aware Normalization (RANorm) with a Dynamic ReCalibration (DRC) module is designed to integrate normalized features between evolving clusters and instances efficiently. Furthermore, a novel Group-based Triplet (G-Triplet) loss is proposed to divide a batch into multiple groups with greater compactness for hard-pair mining. Extensive experiments show that our method outperforms state-of-the-art algorithms on multiple DG benchmarks by a large margin. The proposed method can also achieve superior performance on image classification tasks under DG settings without using domain labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
风中傲柔完成签到,获得积分10
16秒前
Ava应助aab采纳,获得10
36秒前
认真的幻姬完成签到,获得积分10
38秒前
科研通AI6应助霜降采纳,获得10
43秒前
青柠完成签到 ,获得积分10
50秒前
55秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
1分钟前
心静止水发布了新的文献求助10
1分钟前
1分钟前
麻花阳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
难过的踏歌完成签到,获得积分10
2分钟前
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
霜降发布了新的文献求助10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
Kamalika完成签到,获得积分10
3分钟前
3分钟前
甜甜纸飞机完成签到 ,获得积分10
3分钟前
喂我完成签到 ,获得积分10
3分钟前
3分钟前
甜甜的紫菜完成签到 ,获得积分10
3分钟前
aab发布了新的文献求助10
4分钟前
4分钟前
lyw发布了新的文献求助10
4分钟前
4分钟前
CipherSage应助可爱的枕头采纳,获得10
4分钟前
4分钟前
结实山水完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432379
求助须知:如何正确求助?哪些是违规求助? 4544989
关于积分的说明 14195030
捐赠科研通 4464366
什么是DOI,文献DOI怎么找? 2447075
邀请新用户注册赠送积分活动 1438405
关于科研通互助平台的介绍 1415240