Machine Learning and Physics: A Survey of Integrated Models

可解释性 机器学习 人工智能 计算机科学 领域(数学) 物理系统 透明度(行为) 数据科学 物理 数学 计算机安全 量子力学 纯数学
作者
Azra Seyyedi,Mahdi Bohlouli,SeyedEhsan Nedaaee Oskoee
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (5): 1-33 被引量:9
标识
DOI:10.1145/3611383
摘要

Predictive modeling of various systems around the world is extremely essential from the physics and engineering perspectives. The recognition of different systems and the capacity to predict their future behavior can lead to numerous significant applications. For the most part, physics is frequently used to model different systems. Using physical modeling can also very well help the resolution of complexity and achieve superior performance with the emerging field of novel artificial intelligence and the challenges associated with it. Physical modeling provides data and knowledge that offer a meaningful and complementary understanding about the system. So, by using enriched data and training phases, the overall general integrated model achieves enhanced accuracy. The effectiveness of hybrid physics-guided or machine learning-guided models has been validated by experimental results of diverse use cases. Increased accuracy, interpretability, and transparency are the results of such hybrid models. In this article, we provide a detailed overview of how machine learning and physics can be integrated into an interactive approach. Regarding this, we propose a classification of possible interactions between physical modeling and machine learning techniques. Our classification includes three types of approaches: (1) physics-guided machine learning (2) machine learning-guided physics, and (3) mutually-guided physics and ML. We studied the models and specifications for each of these three approaches in-depth for this survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harry完成签到,获得积分0
刚刚
研友_VZG7GZ应助angel采纳,获得10
2秒前
丑丑虎发布了新的文献求助10
3秒前
能干的邹发布了新的文献求助10
3秒前
科研F5完成签到,获得积分10
4秒前
xx发布了新的文献求助10
5秒前
李健的粉丝团团长应助li采纳,获得10
6秒前
细心的白凡完成签到,获得积分20
6秒前
7秒前
jj发布了新的文献求助10
7秒前
starry完成签到 ,获得积分10
8秒前
打打应助aa采纳,获得30
9秒前
9秒前
9秒前
傲娇的烨霖完成签到,获得积分10
10秒前
Wency发布了新的文献求助30
12秒前
gaberella发布了新的文献求助20
12秒前
主旋律发布了新的文献求助10
13秒前
核桃应助陶醉的雪柳采纳,获得10
14秒前
lightgo应助陶醉的雪柳采纳,获得10
14秒前
orixero应助彪壮的绮烟采纳,获得10
15秒前
15秒前
15秒前
jj完成签到,获得积分10
16秒前
17秒前
研友_VZG7GZ应助hu采纳,获得10
17秒前
彭于晏应助细心的白凡采纳,获得10
17秒前
17秒前
nenoaowu发布了新的文献求助10
19秒前
li发布了新的文献求助10
20秒前
椿·发布了新的文献求助10
20秒前
mianbao完成签到,获得积分10
20秒前
Hxq完成签到 ,获得积分10
21秒前
23秒前
23秒前
透心凉1987发布了新的文献求助10
24秒前
积极的安青应助yuyu采纳,获得10
25秒前
25秒前
顾矜应助李敏之采纳,获得10
26秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409