Atomic Charge Schemes Comparison for Fe Single Atom in Graphitic Carbon: Insights from Quantum Simulations and Machine Learning

穆利肯种群分析 Atom(片上系统) 电荷(物理) 化学物理 部分电荷 基质(水族馆) 电子结构 化学 材料科学 密度泛函理论 计算化学 物理 量子力学 计算机科学 海洋学 地质学 嵌入式系统
作者
Zhiyu Wang,Jirui Jin,Mingjie Liu
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (35): 17345-17354 被引量:2
标识
DOI:10.1021/acs.jpcc.3c02475
摘要

Single-atom catalysts (SACs), where a transition-metal atom is embedded in graphitic carbon materials, have shown great potential as effective catalysts. The metal atom plays a major role in determining the catalytic reactivity, and substrate–metal interaction can tailor the intrinsic properties of metal, for example, the atomic partial charge. However, in quantum simulations, various charge schemes are used to assign charges for molecules and materials. It remains unclear whether the atomic partial charge of the metal in SACs is correlated across different charge schemes and if they exhibit different behaviors in response to variations in metal–substrate interactions. In this study, we investigated the behavior of Bader, Mulliken, Hirshfeld, Charge Model 5 (CM5), and Density Derived Electrostatic and Chemical 6 (DDEC6) charge schemes for Fe-centered SACs using quantum simulations and machine learning models. By tuning the structural and chemical parameters in the systems, we examined 166 Fe-centered graphene flakes and compared different charge schemes on the Fe atom. We observed that the DDEC6, Mulliken, and Hirshfeld charges exhibit more noticeable correlations than Bader and CM5 charges. Our findings also indicate that the local chemical environment plays a crucial role in determining the atomic charge of Fe in SACs and that different charge schemes present varied responses to changes in metal–substrate interactions. Additionally, we utilized machine learning (ML) models to predict all five charge schemes by gathering features from geometric, atomic, and electronic properties. Our machine learning models successfully predicted the CM5 scheme, which is primarily determined by electronic properties. However, for DDEC6, Bader, Mulliken, and Hirshfeld schemes, geometric features played a significant role, resulting in lower prediction accuracy than CM5. We expect that the insights gained from this study will contribute to a better understanding of the selection of appropriate charge schemes for SACs design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Awei完成签到,获得积分10
刚刚
shone发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
zyw完成签到 ,获得积分10
7秒前
orixero应助小辉采纳,获得10
8秒前
赵李锋完成签到,获得积分10
10秒前
ding应助灭霸采纳,获得30
10秒前
Tiger完成签到,获得积分10
11秒前
zxzb完成签到,获得积分10
11秒前
小二郎应助javalin采纳,获得10
12秒前
沃若完成签到 ,获得积分10
12秒前
蜡笔小欣完成签到,获得积分20
13秒前
害羞的醉卉完成签到 ,获得积分10
13秒前
13秒前
科研通AI6应助bbsheng采纳,获得10
14秒前
shhoing应助虚幻的芷珊采纳,获得10
14秒前
15秒前
小葡萄完成签到 ,获得积分10
16秒前
冷酷的水壶完成签到,获得积分10
16秒前
学术芽完成签到,获得积分10
17秒前
garlic完成签到,获得积分10
17秒前
piao完成签到 ,获得积分10
18秒前
大林发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
20秒前
共享精神应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
陈家亮应助科研通管家采纳,获得10
21秒前
sorry发布了新的文献求助30
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
今后应助stargazer采纳,获得10
21秒前
充电宝应助小朋友采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556203
求助须知:如何正确求助?哪些是违规求助? 4640817
关于积分的说明 14663035
捐赠科研通 4582830
什么是DOI,文献DOI怎么找? 2513629
邀请新用户注册赠送积分活动 1488255
关于科研通互助平台的介绍 1459006