堆栈(抽象数据类型)
质子交换膜燃料电池
分类
遗传算法
电压
功率(物理)
阳极
计算机科学
控制理论(社会学)
工程类
电子工程
算法
燃料电池
电气工程
化学
化学工程
电极
物理
控制(管理)
量子力学
物理化学
机器学习
人工智能
程序设计语言
作者
Liang Zhao,Hui Cui Chen,Tong Zhang,Thomas von Unwerth,Carmen Meuser
出处
期刊:ECS transactions
[The Electrochemical Society]
日期:2023-09-29
卷期号:112 (4): 243-256
标识
DOI:10.1149/11204.0243ecst
摘要
This paper proposes a non-dominated sorting genetic algorithm II (NSGA-II) for optimizing the startup strategy of a proton exchange membrane fuel cell (PEMFC) stack to improve the dynamic response capability, output voltage, and net power. First, a Simulink model of the PEMFC stack including the anode module, cathode module, water transfer module, output voltage module, and output net power module is established, and the accuracy of the stack model is verified through experiments. The three performances are then optimized simultaneously based on NSGA-II. The results show that the optimized start-up loading strategy results in a PEMFC stack that outperforms the base model in steady-state voltage, undershoot percent, and net power these three indicators with the same response time, demonstrating the success of the method in solving multiple optimization problems. This study presents an effective approach for the multi-objective optimization of the PEMFC stack, which is of guidance for engineering practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI