Numerical investigation of machining of SiC/Al matrix composites by a coupled SPH and FEM

有限元法 光滑粒子流体力学 材料科学 机械加工 碎屑形成 联轴节(管道) 变形(气象学) 基质(化学分析) 复合材料 结构工程 机械 工程类 刀具磨损 物理 冶金
作者
Xiaoyan Teng,Dehan Xiao,Xudong Jiang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:122 (3-4): 2003-2018 被引量:4
标识
DOI:10.1007/s00170-022-09985-5
摘要

The machining process of SiC/Al matrix composites is characterized by strong nonlinearity, and thus, there are great challenges resulting from excessive deformation and stress concentration at the tool-workpiece interface in solving such problems. Smoothed particle hydrodynamics (SPH) as a particle-based algorithm can efficiently tackle mesh distortion due to large deformation using finite element method (FEM) for cutting simulations. However, the computational efficiency by SPH is far below the counterpart by FEM. As a result, to address such issues with individual use of SPH or FEM, the coupled SPH-FEM algorithm is presented to calculate large deformation of aluminum matrix using SPH and small deformation of SiC particles using FEM. This paper aims to develop a SPH-FEM coupling model of machining SiC/Al matrix composites and compare the results with an equivalent FE model. A good agreement between numerical results from the SPH-FEM model and those from the FE model is achieved, which shows that the SPH-FEM coupling method is an alternative to FEM for predicting the cutting force, chip formation, and machined surface morphology. The developed SPH-FEM model is also employed to investigate the influence of the cutting parameters including SiC volume fraction, cutting velocity, and uncut chip thickness on the cutting force. Finally, the orthogonal cutting experiments were conducted to validate the presented SPH-FEM model. Numerical results are in good agreement with experimental results, which confirms that SPH-FEM can accurately predict the resulting cutting force and machined surface morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Phaiane发布了新的文献求助10
1秒前
world发布了新的文献求助10
3秒前
body发布了新的文献求助10
4秒前
4秒前
hhn完成签到,获得积分20
5秒前
5秒前
6秒前
yeyeyeye完成签到,获得积分10
7秒前
可爱的函函应助包容友儿采纳,获得10
8秒前
orixero应助流星雨采纳,获得10
10秒前
cdercder应助甜蜜的代容采纳,获得10
10秒前
香蕉觅云应助周小鱼采纳,获得10
10秒前
姚博发布了新的文献求助10
11秒前
茄子发布了新的文献求助10
11秒前
宁霸完成签到,获得积分0
11秒前
13秒前
李爱国应助勤劳的小牛蛙采纳,获得10
13秒前
14秒前
汉堡包应助WSR采纳,获得30
14秒前
15秒前
科研通AI5应助zhao采纳,获得10
15秒前
16秒前
SYLH应助Jokeypu采纳,获得20
16秒前
善学以致用应助zxr采纳,获得10
17秒前
小浣熊完成签到,获得积分10
17秒前
18秒前
lllllan发布了新的文献求助10
18秒前
丘比特应助小王同学采纳,获得10
18秒前
yu完成签到,获得积分10
19秒前
善学以致用应助甜美宛儿采纳,获得10
19秒前
fengbeing完成签到,获得积分10
20秒前
20秒前
yu发布了新的文献求助10
22秒前
li发布了新的文献求助10
23秒前
orixero应助小张爱学习采纳,获得10
23秒前
如意2023发布了新的文献求助20
28秒前
中豪贾完成签到 ,获得积分10
28秒前
yuchangkun发布了新的文献求助20
29秒前
29秒前
英俊的铭应助高贵的子默采纳,获得10
30秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833048
求助须知:如何正确求助?哪些是违规求助? 3375470
关于积分的说明 10489248
捐赠科研通 3095117
什么是DOI,文献DOI怎么找? 1704226
邀请新用户注册赠送积分活动 819877
科研通“疑难数据库(出版商)”最低求助积分说明 771661