A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection

计算机科学 人工智能 卷积神经网络 心律失常 深度学习 模式识别(心理学) 特征提取 杠杆(统计) 机器学习 心房颤动 内科学 医学
作者
Negin Alamatsaz,Leyla s Tabatabaei,Mohammadreza Yazdchi,Hamidreza Payan,Nima Alamatsaz,Fahimeh Nasimi
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2209.00988
摘要

Electrocardiogram (ECG) is the most frequent and routine diagnostic tool used for monitoring heart electrical signals and evaluating its functionality. The human heart can suffer from a variety of diseases, including cardiac arrhythmias. Arrhythmia is an irregular heart rhythm that in severe cases can lead to heart stroke and can be diagnosed via ECG recordings. Since early detection of cardiac arrhythmias is of great importance, computerized and automated classification and identification of these abnormal heart signals have received much attention for the past decades. Methods: This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm. To leverage deep learning method, resampling and baseline wander removal techniques are applied to ECG signals. In this study, 500 sample ECG segments were used as model inputs. The rhythm classification was done by an 11-layer network in an end-to-end manner without the need for hand-crafted manual feature extraction. Results: In order to evaluate the proposed technique, ECG signals are chosen from the two physionet databases, the MIT-BIH arrhythmia database and the long-term AF database. The proposed deep learning framework based on the combination of Convolutional Neural Network(CNN) and Long Short Term Memory (LSTM) showed promising results than most of the state-of-the-art methods. The proposed method reaches the mean diagnostic accuracy of 98.24%. Conclusion: A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested. Significance: Since the present work uses a light classification technique with high diagnostic accuracy compared to other notable methods, it could successfully be implemented in holter monitor devices for arrhythmia detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang2001关注了科研通微信公众号
1秒前
莽哥完成签到,获得积分10
2秒前
冷酷的戎发布了新的文献求助10
3秒前
善学以致用应助虚幻夜白采纳,获得10
4秒前
一顿鸡米花完成签到,获得积分10
5秒前
9秒前
10秒前
12秒前
zhang2001发布了新的文献求助10
13秒前
14秒前
简单平蓝发布了新的文献求助10
15秒前
安然发布了新的文献求助30
15秒前
调皮秋尽完成签到,获得积分10
16秒前
elous发布了新的文献求助10
16秒前
万能图书馆应助神经娃采纳,获得10
18秒前
juanjuan发布了新的文献求助10
19秒前
24秒前
24秒前
YIFEI发布了新的文献求助10
28秒前
二由完成签到 ,获得积分10
28秒前
觉悟111关注了科研通微信公众号
28秒前
wang发布了新的文献求助10
29秒前
拾寒完成签到 ,获得积分10
33秒前
隐形曼青应助科研通管家采纳,获得50
37秒前
冰魂应助科研通管家采纳,获得20
37秒前
英姑应助科研通管家采纳,获得10
37秒前
大个应助科研通管家采纳,获得30
37秒前
大模型应助科研通管家采纳,获得30
37秒前
上官若男应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
SciGPT应助科研通管家采纳,获得30
37秒前
37秒前
38秒前
临界完成签到,获得积分10
41秒前
42秒前
zfihead发布了新的文献求助10
43秒前
43秒前
清脆谷槐完成签到,获得积分20
44秒前
Mercury完成签到 ,获得积分10
45秒前
田様应助陆柒捌采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385