Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review

计算机辅助设计 计算机科学 人工智能 卷积神经网络 机器学习 计算机辅助诊断 深度学习 人工神经网络 算法 分割 模式识别(心理学) 工程类 工程制图
作者
Haizhe Jin,Cheng Yu,Zibo Gong,Renjie Zheng,Yinan Zhao,Quanwei Fu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104104-104104 被引量:5
标识
DOI:10.1016/j.bspc.2022.104104
摘要

Early detection of pulmonary nodules is critical for the prevention and treatment of lung cancer. Concomitant with recent advancements in computer performance and intelligent algorithms, the efficacy of pulmonary nodule computer-aided diagnosis (CAD) has been continuously improving, and various algorithms have been proposed using different datasets. This study systematically analyzed and compared the performance of machine learning algorithms using the same dataset in the diagnosis of pulmonary nodules through a literature review. The widely used LIDC-IDRI dataset and its subset LUNA16 were used as data objects. The SpringerLink, Science Direct, IEEE Xplore, and PubMed scientific databases were searched, and seventy-five papers were analyzed. Deep-learning-based CAD was found to be superior to conventional machine-learning-based CAD in terms of the number of published studies and algorithm performance. The best performances were as follows: feedforward neural network (FNN) and convolutional neural network (CNN) for detecting pulmonary nodules; region-based CNN (R-CNN) for the segmentation of pulmonary nodules; residual neural network (ResNet) for the classification of nodules and non-nodules; and deep neural network (DNN) for the classification of benign and malignancy. To further extend the application of CAD in clinical practice, the appropriate algorithm type should be used based on the characteristics of the task. The CAD process should be divided into logical stages and the optimal algorithm for each stage should be used to increase the reliability of the process. The CAD performance of numerous algorithms on the same dataset is systematically compared and ideas for future exploration are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助左丘白桃采纳,获得80
1秒前
Gzl完成签到 ,获得积分10
3秒前
Seoyeong完成签到,获得积分20
3秒前
xixi789完成签到,获得积分10
5秒前
ezeye6666关注了科研通微信公众号
6秒前
bbll完成签到,获得积分10
7秒前
Akiii_完成签到,获得积分10
7秒前
齐多达完成签到 ,获得积分10
9秒前
窗窗窗雨完成签到,获得积分10
10秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
12秒前
leo完成签到,获得积分20
12秒前
14秒前
Gavin完成签到,获得积分10
16秒前
17秒前
17秒前
小红象完成签到,获得积分10
18秒前
羊觅夏发布了新的文献求助10
19秒前
科研通AI6应助CES_SH采纳,获得30
20秒前
knight7m完成签到 ,获得积分10
23秒前
ezeye6666发布了新的文献求助30
24秒前
花藏影完成签到,获得积分10
25秒前
大樗完成签到,获得积分10
26秒前
Owen应助inspirx采纳,获得30
28秒前
羊觅夏完成签到,获得积分10
29秒前
科研通AI5应助大樗采纳,获得10
30秒前
祥小哥完成签到,获得积分10
31秒前
rozzz完成签到,获得积分10
31秒前
雨下整夜完成签到,获得积分10
33秒前
可爱草丛完成签到,获得积分10
34秒前
Acid完成签到 ,获得积分10
35秒前
36秒前
少年英雄小毛哥应助leo采纳,获得30
39秒前
丰富靖琪完成签到 ,获得积分10
40秒前
Jun发布了新的文献求助10
43秒前
111完成签到 ,获得积分10
44秒前
48秒前
艾妮吗发布了新的文献求助10
49秒前
呐呐呐完成签到 ,获得积分10
53秒前
星宿陨完成签到 ,获得积分10
53秒前
大樗发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775785
求助须知:如何正确求助?哪些是违规求助? 4107927
关于积分的说明 12707273
捐赠科研通 3829091
什么是DOI,文献DOI怎么找? 2112437
邀请新用户注册赠送积分活动 1136242
关于科研通互助平台的介绍 1019939