共轭梯度法
梯度下降
非线性共轭梯度法
算法
趋同(经济学)
数学
共轭残差法
基质(化学分析)
结合
共轭梯度法的推导
椭球体
梯度法
计算机科学
应用数学
数学分析
人工智能
人工神经网络
天文
材料科学
经济
复合材料
物理
经济增长
作者
Renato D. C. Monteiro,Jerome W. O’Neal,Arkadi Nemirovski
摘要
The conjugate gradient (CG) algorithm is well-known to have excellent theoretical properties for solving linear systems of equations Ax = b where the n £ n matrix A is symmetric positive definite. However, for extremely ill-conditioned matrices the CG algorithm performs poorly in practice. In this paper, we discuss an adaptive preconditioning procedure which improves the performance of the CG algorithm on extremely ill-conditioned systems. We introduce the preconditioning procedure by applying it first to the steepest descent algorithm. Then, the same techniques are extended to the CG algorithm, and convergence to an †-solution in O(logdet(A) + p nlog† i1 ) iterations is proven, where det(A) is the determinant of the matrix.
科研通智能强力驱动
Strongly Powered by AbleSci AI