Improving Early Drug Discovery through ADME Modelling

广告 药物开发 药物发现 药品 风险分析(工程) 医学 计算机科学 药理学 计算生物学 化学 生化工程 重症监护医学 系统药理学 药物治疗 生物信息学 工程类 生物
作者
David S. Wishart
出处
期刊:Drugs in R & D [Adis, Springer Healthcare]
卷期号:8 (6): 349-362 被引量:92
标识
DOI:10.2165/00126839-200708060-00003
摘要

Drug development is an intrinsically risky business. Like a high stakes poker game the entry costs are high and the probability of winning is low. Indeed, only a tiny percentage of lead compounds ever reach US FDA approval. At any point during the drug development process a prospective drug lead may be terminated owing to lack of efficacy, adverse effects, excessive toxicity, poor absorption or poor clearance. Unfortunately, the more promising a drug lead appears to be, the more costly it is to terminate its development. Typically, the cost of killing a drug grows exponentially as a drug lead moves further down the development pipeline. As a result there is considerable interest in developing either experimental or computational methods that can identify potentially problematic drug leads at the earliest stages in their development. One promising route is through the prediction or modelling of ADME (absorption, distribution, metabolism and excretion). ADME data, whether experimentally measured or computationally predicted, provide key insights into how a drug will ultimately be treated or accepted by the body. So while a drug lead may exhibit phenomenal efficacy in vitro, poor ADME results will almost invariably terminate its development. This review focuses on the use of ADME modelling to reduce late-stage attrition in drug discovery programmes. It also highlights what tools exist today for visualising and predicting ADME data, what tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery. In particular, it highlights what tools exist today for visualising and predicting ADME data including: (1) ADME parameter predictors; (2) metabolic fate predictors; (3) metabolic stability predictors; (4) cytochrome P450 substrate predictors; and (5) physiology-based pharmacokinetic (PBPK) modelling software. It also discusses what kinds of tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯英钊完成签到,获得积分10
1秒前
okay完成签到,获得积分10
3秒前
从容不弱完成签到,获得积分10
3秒前
彭于晏应助不羁采纳,获得10
5秒前
完美冥完成签到,获得积分10
6秒前
小二郎应助小樱颖子采纳,获得10
8秒前
8秒前
Katrina完成签到,获得积分10
9秒前
zxy完成签到,获得积分10
10秒前
惠香香的完成签到,获得积分10
11秒前
想吃哆啦A梦的记忆面包完成签到,获得积分10
11秒前
11秒前
norberta发布了新的文献求助10
12秒前
louhuiiii完成签到,获得积分10
12秒前
nan应助Gu采纳,获得30
14秒前
15秒前
甜美的芷完成签到,获得积分10
17秒前
19秒前
louhuiiii发布了新的文献求助10
20秒前
宋宋宋发布了新的文献求助10
20秒前
搬砖人完成签到,获得积分10
20秒前
shi hui应助甜美的芷采纳,获得10
22秒前
unless完成签到,获得积分10
22秒前
义气的元柏完成签到 ,获得积分10
23秒前
qingchi完成签到,获得积分10
24秒前
拿铁小笼包完成签到,获得积分10
25秒前
尊敬的小凡完成签到,获得积分10
26秒前
27秒前
妥协发布了新的文献求助10
28秒前
xiongyuan完成签到,获得积分10
28秒前
超帅寻芹cy完成签到,获得积分20
29秒前
天马行空完成签到,获得积分10
30秒前
xinyu发布了新的文献求助10
32秒前
32秒前
32秒前
32秒前
33秒前
36秒前
紧张的寻冬完成签到 ,获得积分10
37秒前
37秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380787
求助须知:如何正确求助?哪些是违规求助? 4504515
关于积分的说明 14018431
捐赠科研通 4413608
什么是DOI,文献DOI怎么找? 2424312
邀请新用户注册赠送积分活动 1417284
关于科研通互助平台的介绍 1395019