Improving Early Drug Discovery through ADME Modelling

广告 药物开发 药物发现 药品 风险分析(工程) 医学 计算机科学 药理学 计算生物学 化学 生化工程 重症监护医学 系统药理学 药物治疗 生物信息学 工程类 生物
作者
David S. Wishart
出处
期刊:Drugs in R & D [Springer Nature]
卷期号:8 (6): 349-362 被引量:92
标识
DOI:10.2165/00126839-200708060-00003
摘要

Drug development is an intrinsically risky business. Like a high stakes poker game the entry costs are high and the probability of winning is low. Indeed, only a tiny percentage of lead compounds ever reach US FDA approval. At any point during the drug development process a prospective drug lead may be terminated owing to lack of efficacy, adverse effects, excessive toxicity, poor absorption or poor clearance. Unfortunately, the more promising a drug lead appears to be, the more costly it is to terminate its development. Typically, the cost of killing a drug grows exponentially as a drug lead moves further down the development pipeline. As a result there is considerable interest in developing either experimental or computational methods that can identify potentially problematic drug leads at the earliest stages in their development. One promising route is through the prediction or modelling of ADME (absorption, distribution, metabolism and excretion). ADME data, whether experimentally measured or computationally predicted, provide key insights into how a drug will ultimately be treated or accepted by the body. So while a drug lead may exhibit phenomenal efficacy in vitro, poor ADME results will almost invariably terminate its development. This review focuses on the use of ADME modelling to reduce late-stage attrition in drug discovery programmes. It also highlights what tools exist today for visualising and predicting ADME data, what tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery. In particular, it highlights what tools exist today for visualising and predicting ADME data including: (1) ADME parameter predictors; (2) metabolic fate predictors; (3) metabolic stability predictors; (4) cytochrome P450 substrate predictors; and (5) physiology-based pharmacokinetic (PBPK) modelling software. It also discusses what kinds of tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHY2023发布了新的文献求助10
刚刚
麻花发布了新的文献求助10
1秒前
1秒前
陈糯米发布了新的文献求助10
1秒前
彭于晏应助hhh采纳,获得10
2秒前
何梓桐发布了新的文献求助10
2秒前
nanjiren完成签到,获得积分10
2秒前
查查完成签到,获得积分10
2秒前
2秒前
善学以致用应助阿婧采纳,获得10
3秒前
布洛芬完成签到,获得积分10
3秒前
烟花应助liang采纳,获得10
3秒前
菜园子完成签到,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Aminoacid发布了新的文献求助10
4秒前
4秒前
4秒前
bluechen800205完成签到,获得积分10
4秒前
4秒前
C_完成签到,获得积分10
5秒前
刘柳完成签到 ,获得积分10
6秒前
酷酷宛应助把荔枝摆中间采纳,获得10
6秒前
rrr发布了新的文献求助20
6秒前
6秒前
小尹完成签到,获得积分10
6秒前
谈舒怡完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
李健的粉丝团团长应助moon采纳,获得30
8秒前
汪宇发布了新的文献求助10
8秒前
闪电先生发布了新的文献求助10
8秒前
8秒前
Pothos应助TRY采纳,获得10
8秒前
白星完成签到,获得积分10
8秒前
lalala应助TRY采纳,获得10
8秒前
C_发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5672558
求助须知:如何正确求助?哪些是违规求助? 4926939
关于积分的说明 15141048
捐赠科研通 4831647
什么是DOI,文献DOI怎么找? 2587631
邀请新用户注册赠送积分活动 1541437
关于科研通互助平台的介绍 1499705