已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Early Drug Discovery through ADME Modelling

广告 药物开发 药物发现 药品 风险分析(工程) 医学 计算机科学 药理学 计算生物学 化学 生化工程 重症监护医学 系统药理学 药物治疗 生物信息学 工程类 生物
作者
David S. Wishart
出处
期刊:Drugs in R & D [Adis, Springer Healthcare]
卷期号:8 (6): 349-362 被引量:92
标识
DOI:10.2165/00126839-200708060-00003
摘要

Drug development is an intrinsically risky business. Like a high stakes poker game the entry costs are high and the probability of winning is low. Indeed, only a tiny percentage of lead compounds ever reach US FDA approval. At any point during the drug development process a prospective drug lead may be terminated owing to lack of efficacy, adverse effects, excessive toxicity, poor absorption or poor clearance. Unfortunately, the more promising a drug lead appears to be, the more costly it is to terminate its development. Typically, the cost of killing a drug grows exponentially as a drug lead moves further down the development pipeline. As a result there is considerable interest in developing either experimental or computational methods that can identify potentially problematic drug leads at the earliest stages in their development. One promising route is through the prediction or modelling of ADME (absorption, distribution, metabolism and excretion). ADME data, whether experimentally measured or computationally predicted, provide key insights into how a drug will ultimately be treated or accepted by the body. So while a drug lead may exhibit phenomenal efficacy in vitro, poor ADME results will almost invariably terminate its development. This review focuses on the use of ADME modelling to reduce late-stage attrition in drug discovery programmes. It also highlights what tools exist today for visualising and predicting ADME data, what tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery. In particular, it highlights what tools exist today for visualising and predicting ADME data including: (1) ADME parameter predictors; (2) metabolic fate predictors; (3) metabolic stability predictors; (4) cytochrome P450 substrate predictors; and (5) physiology-based pharmacokinetic (PBPK) modelling software. It also discusses what kinds of tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好运滚滚来完成签到 ,获得积分10
4秒前
pyp发布了新的文献求助10
4秒前
7秒前
8秒前
8秒前
黑影子77完成签到,获得积分10
8秒前
果子应助zhounan采纳,获得10
8秒前
赫若魔应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
pluviophile应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
大个应助党参采纳,获得10
11秒前
ZZZ发布了新的文献求助10
11秒前
12秒前
wuzhi发布了新的文献求助10
12秒前
HESOYAM完成签到 ,获得积分10
13秒前
充电宝应助pyp采纳,获得10
13秒前
14秒前
14秒前
xiaoming完成签到 ,获得积分10
17秒前
18秒前
19秒前
mictime完成签到,获得积分10
19秒前
英俊的铭应助聪明的青雪采纳,获得10
21秒前
21秒前
22秒前
oqura完成签到 ,获得积分10
23秒前
24秒前
小陈发布了新的文献求助10
25秒前
28秒前
28秒前
风清扬应助Shawna采纳,获得30
29秒前
lyz完成签到,获得积分10
32秒前
33秒前
jjjjz发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4832916
求助须知:如何正确求助?哪些是违规求助? 4137443
关于积分的说明 12806626
捐赠科研通 3880642
什么是DOI,文献DOI怎么找? 2134302
邀请新用户注册赠送积分活动 1154392
关于科研通互助平台的介绍 1052919