已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Early Drug Discovery through ADME Modelling

广告 药物开发 药物发现 药品 风险分析(工程) 医学 计算机科学 药理学 计算生物学 化学 生化工程 重症监护医学 系统药理学 药物治疗 生物信息学 工程类 生物
作者
David S. Wishart
出处
期刊:Drugs in R & D [Adis, Springer Healthcare]
卷期号:8 (6): 349-362 被引量:92
标识
DOI:10.2165/00126839-200708060-00003
摘要

Drug development is an intrinsically risky business. Like a high stakes poker game the entry costs are high and the probability of winning is low. Indeed, only a tiny percentage of lead compounds ever reach US FDA approval. At any point during the drug development process a prospective drug lead may be terminated owing to lack of efficacy, adverse effects, excessive toxicity, poor absorption or poor clearance. Unfortunately, the more promising a drug lead appears to be, the more costly it is to terminate its development. Typically, the cost of killing a drug grows exponentially as a drug lead moves further down the development pipeline. As a result there is considerable interest in developing either experimental or computational methods that can identify potentially problematic drug leads at the earliest stages in their development. One promising route is through the prediction or modelling of ADME (absorption, distribution, metabolism and excretion). ADME data, whether experimentally measured or computationally predicted, provide key insights into how a drug will ultimately be treated or accepted by the body. So while a drug lead may exhibit phenomenal efficacy in vitro, poor ADME results will almost invariably terminate its development. This review focuses on the use of ADME modelling to reduce late-stage attrition in drug discovery programmes. It also highlights what tools exist today for visualising and predicting ADME data, what tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery. In particular, it highlights what tools exist today for visualising and predicting ADME data including: (1) ADME parameter predictors; (2) metabolic fate predictors; (3) metabolic stability predictors; (4) cytochrome P450 substrate predictors; and (5) physiology-based pharmacokinetic (PBPK) modelling software. It also discusses what kinds of tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
亚亚完成签到 ,获得积分10
刚刚
贪玩仙人掌完成签到,获得积分10
1秒前
小菜完成签到 ,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
司空豁应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
司空豁应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
研友_VZG7GZ应助大神懒洋洋采纳,获得10
9秒前
科研菜鱼完成签到,获得积分10
11秒前
11秒前
12秒前
云中漫步完成签到,获得积分10
14秒前
aminminmin发布了新的文献求助10
14秒前
XXXXY发布了新的文献求助10
16秒前
liunshi发布了新的文献求助10
17秒前
江江江江完成签到,获得积分10
17秒前
冷笑完成签到,获得积分10
18秒前
李健的小迷弟应助潇洒yu采纳,获得10
19秒前
自由的明雪完成签到,获得积分20
22秒前
打打应助粗暴的乐巧采纳,获得10
23秒前
24秒前
25秒前
26秒前
脑洞疼应助aminminmin采纳,获得30
31秒前
DrDaiJune发布了新的文献求助10
31秒前
tejing1158发布了新的文献求助10
32秒前
37秒前
40秒前
赘婿应助Q蒂采纳,获得10
41秒前
善学以致用应助阿九采纳,获得10
42秒前
小猛人发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 900
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3940416
求助须知:如何正确求助?哪些是违规求助? 3486144
关于积分的说明 11036878
捐赠科研通 3216011
什么是DOI,文献DOI怎么找? 1777626
邀请新用户注册赠送积分活动 863705
科研通“疑难数据库(出版商)”最低求助积分说明 798972