Sparse Overlapping Group Lasso for Integrative Multi-Omics Analysis

过度拟合 Lasso(编程语言) 基因调控网络 特征选择 计算生物学 生物网络 计算机科学 基因 基因选择 选择(遗传算法) 交互网络 数据挖掘 机器学习 生物 人工神经网络 遗传学 基因表达 微阵列分析技术 万维网
作者
Heewon Park,Atushi Niida,Satoru Miyano,Seiya Imoto
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:22 (2): 73-84 被引量:21
标识
DOI:10.1089/cmb.2014.0197
摘要

Gene networks and graphs are crucial tools for understanding a heterogeneous system of cancer, since cancer is a disease that does not involve individual genes but combinations of genes associated with oncogenic process. A goal of genomic data analysis via gene networks is to identify both gene networks and individual genes within the selected networks. Existing methods, however, perform only network selection, and thus all genes in selected networks are included in models. This leads to overfitting when uncovering driver genes, and the results are not biologically interpretable. To accomplish both "groupwise sparsity" and "within group sparsity" for identifying driver genes based on biological knowledge (i.e., predefined overlapping groups of features), we propose a sparse overlapping group lasso via duplicated predictors in extended space. The proposed method effectively identifies driver genes and their interactions using known biological pathway information. Monte Carlo simulations and The Cancer Genome Atlas (TCGA) project data analysis indicate that the proposed method is effective for fitting a regression model (i.e., feature selection and prediction accuracy) constructed with duplicated predictors in overlapping groups. In the TCGA data analysis, we uncover potential cancer driver genes via expression modules and gene networks constructed by multi-omics data and identify that the uncovered genes have strong evidences as a cancer driver gene. The proposed method is a useful tool for identifying cancer driver genes and for integrative multi-omics analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研新完成签到,获得积分10
1秒前
852应助qq采纳,获得10
1秒前
酒石酸完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
顾矜应助yyl采纳,获得10
2秒前
桐桐应助鲤鱼越越采纳,获得10
2秒前
奋斗思柔完成签到,获得积分10
2秒前
3秒前
xinxinwen完成签到,获得积分10
4秒前
盼不热夏完成签到,获得积分10
6秒前
菠萝橙子完成签到,获得积分10
7秒前
YYJ完成签到,获得积分10
8秒前
光头强完成签到,获得积分10
10秒前
12秒前
12秒前
小二郎应助nicolasfugui采纳,获得10
12秒前
lxz发布了新的文献求助10
12秒前
英姑应助聆(*^_^*)采纳,获得10
13秒前
小马甲应助立早采纳,获得10
13秒前
Carsen完成签到,获得积分10
14秒前
tomorrow完成签到 ,获得积分10
15秒前
16秒前
wwmmyy完成签到 ,获得积分10
16秒前
17秒前
yongtt发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
xmh完成签到,获得积分20
18秒前
安双完成签到 ,获得积分10
18秒前
Jasper应助绝绝子采纳,获得30
18秒前
20秒前
22秒前
吴小埋发布了新的文献求助30
22秒前
当晚星散落完成签到,获得积分10
22秒前
科研通AI5应助momo采纳,获得10
23秒前
Perhy完成签到,获得积分10
24秒前
24秒前
24秒前
future完成签到 ,获得积分10
25秒前
枯萎的蓝天完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693483
求助须知:如何正确求助?哪些是违规求助? 4064257
关于积分的说明 12566571
捐赠科研通 3762559
什么是DOI,文献DOI怎么找? 2078040
邀请新用户注册赠送积分活动 1106385
科研通“疑难数据库(出版商)”最低求助积分说明 984741