Mapping global forest age from forest inventories, biomass and climate data

森林砍伐(计算机科学) 亚马逊雨林 环境科学 生物量(生态学) 森林动态 老林 气候变化 次生林 森林资源清查 高林 林地 自然地理学 地理 林业 农林复合经营 森林经营 生态学 生物 计算机科学 程序设计语言 生物化学 梅德林
作者
Simon Besnard,Sujan Koirala,Maurizio Santoro,Ulrich Weber,Jacob A. Nelson,Jonas Gütter,Bruno Hérault,Justin Kassi,Anny Estelle N’Guessan,C. S. R. Neigh,Benjamin Poulter,Tao Zhang,Nuno Carvalhais
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:13 (10): 4881-4896 被引量:132
标识
DOI:10.5194/essd-13-4881-2021
摘要

Abstract. Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. However, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. This study provides a new global distribution of forest age circa 2010, estimated using a machine learning approach trained with more than 40 000 plots using forest inventory, biomass and climate data. First, an evaluation against the plot-level measurements of forest age reveals that the data-driven method has a relatively good predictive capacity of classifying old-growth vs. non-old-growth (precision = 0.81 and 0.99 for old-growth and non-old-growth, respectively) forests and estimating corresponding forest age estimates (NSE = 0.6 – Nash–Sutcliffe efficiency – and RMSE = 50 years – root-mean-square error). However, there are systematic biases of overestimation in young- and underestimation in old-forest stands, respectively. Globally, we find a large variability in forest age with the old-growth forests in the tropical regions of Amazon and Congo, young forests in China, and intermediate stands in Europe. Furthermore, we find that the regions with high rates of deforestation or forest degradation (e.g. the arc of deforestation in the Amazon) are composed mainly of younger stands. Assessment of forest age in the climate space shows that the old forests are either in cold and dry regions or warm and wet regions, while young–intermediate forests span a large climatic gradient. Finally, comparing the presented forest age estimates with a series of regional products reveals differences rooted in different approaches and different in situ observations and global-scale products. Despite showing robustness in cross-validation results, additional methodological insights on further developments should as much as possible harmonize data across the different approaches. The forest age dataset presented here provides additional insights into the global distribution of forest age to better understand the global dynamics in the forest water and carbon cycles. The forest age datasets are openly available at https://doi.org/10.17871/ForestAgeBGI.2021 (Besnard et al., 2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
icanccwhite发布了新的文献求助10
1秒前
cheng完成签到,获得积分10
1秒前
1秒前
zxcvbnm发布了新的文献求助10
2秒前
Ava应助Georges-09采纳,获得10
3秒前
4秒前
李健应助典雅的俊驰采纳,获得10
4秒前
5秒前
平生完成签到 ,获得积分10
5秒前
完美世界应助知奥采纳,获得10
5秒前
jksg发布了新的文献求助10
5秒前
6秒前
花卷花卷完成签到,获得积分10
6秒前
科研通AI6应助单薄的夏槐采纳,获得10
7秒前
8秒前
1997SD发布了新的文献求助10
8秒前
赵胜雪发布了新的文献求助10
8秒前
Roxie完成签到,获得积分10
8秒前
8秒前
恬恬完成签到,获得积分10
9秒前
孟严青完成签到,获得积分0
10秒前
magicfu发布了新的文献求助10
11秒前
shelly发布了新的文献求助10
11秒前
善学以致用应助Edelweiss采纳,获得10
11秒前
12秒前
王sy完成签到 ,获得积分10
12秒前
12秒前
飘逸发布了新的文献求助30
13秒前
乐乐应助等待的雪莲采纳,获得10
13秒前
zzz发布了新的文献求助10
13秒前
十里完成签到 ,获得积分10
14秒前
上官若男应助木林山水采纳,获得10
15秒前
希望天下0贩的0应助1997SD采纳,获得10
15秒前
16秒前
彭于晏应助小天才魔仙采纳,获得10
16秒前
张千鸿完成签到,获得积分10
17秒前
共享精神应助luck采纳,获得10
18秒前
18秒前
独特冬天发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497023
求助须知:如何正确求助?哪些是违规求助? 4594625
关于积分的说明 14445515
捐赠科研通 4527211
什么是DOI,文献DOI怎么找? 2480762
邀请新用户注册赠送积分活动 1465186
关于科研通互助平台的介绍 1437884