Glaucoma Assessment from Fundus Images with Fundus to OCT Feature Space Mapping

青光眼 眼底(子宫) 光学相干层析成像 计算机科学 人工智能 计算机视觉 模态(人机交互) 眼底摄影 特征(语言学) 验光服务 眼科 医学 视网膜 荧光血管造影 语言学 哲学
作者
Divya Jyothi Gaddipati,Jayanthi Sivaswamy
出处
期刊:ACM transactions on computing for healthcare [Association for Computing Machinery]
卷期号:3 (1): 1-15 被引量:9
标识
DOI:10.1145/3470979
摘要

Early detection and treatment of glaucoma is of interest as it is a chronic eye disease leading to an irreversible loss of vision. Existing automated systems rely largely on fundus images for assessment of glaucoma due to their fast acquisition and cost-effectiveness. Optical Coherence Tomographic ( OCT ) images provide vital and unambiguous information about nerve fiber loss and optic cup morphology, which are essential for disease assessment. However, the high cost of OCT is a deterrent for deployment in screening at large scale. In this article, we present a novel CAD solution wherein both OCT and fundus modality images are leveraged to learn a model that can perform a mapping of fundus to OCT feature space. We show how this model can be subsequently used to detect glaucoma given an image from only one modality (fundus). The proposed model has been validated extensively on four public andtwo private datasets. It attained an AUC/Sensitivity value of 0.9429/0.9044 on a diverse set of 568 images, which is superior to the figures obtained by a model that is trained only on fundus features. Cross-validation was also done on nearly 1,600 images drawn from a private (OD-centric) and a public (macula-centric) dataset and the proposed model was found to outperform the state-of-the-art method by 8% (public) to 18% (private). Thus, we conclude that fundus to OCT feature space mapping is an attractive option for glaucoma detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
song_song完成签到,获得积分10
刚刚
李健的小迷弟应助annie2D采纳,获得150
3秒前
mhnbdfsjh发布了新的文献求助10
3秒前
浮游应助默默咖啡豆采纳,获得10
3秒前
自由能完成签到,获得积分10
4秒前
小小发布了新的文献求助10
5秒前
5秒前
学不会物理的男孩完成签到,获得积分10
7秒前
8秒前
HUOZHUANGCHAO完成签到,获得积分10
8秒前
耙芋儿发布了新的文献求助10
10秒前
自由的青槐完成签到 ,获得积分10
11秒前
12秒前
hhhx发布了新的文献求助10
12秒前
12秒前
13秒前
小蘑菇应助嘎嘎采纳,获得10
16秒前
annie2D发布了新的文献求助150
16秒前
shuangcheng完成签到,获得积分10
17秒前
19秒前
醉熏的小蜜蜂完成签到 ,获得积分10
20秒前
Anthony完成签到 ,获得积分10
21秒前
21秒前
21秒前
赛亚人发布了新的文献求助10
22秒前
24秒前
clxgene完成签到,获得积分10
24秒前
苏牧完成签到,获得积分10
25秒前
CanKaiLin发布了新的文献求助20
25秒前
脑洞疼应助云谷采纳,获得10
25秒前
四天垂发布了新的文献求助30
26秒前
PhD_Ren完成签到,获得积分10
27秒前
仙道彰完成签到,获得积分10
27秒前
AKIN完成签到,获得积分10
27秒前
梦XING完成签到 ,获得积分10
27秒前
冬日暖阳完成签到,获得积分10
28秒前
小芒果完成签到,获得积分0
28秒前
正己化人应助HHM采纳,获得10
29秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381160
求助须知:如何正确求助?哪些是违规求助? 4504646
关于积分的说明 14018876
捐赠科研通 4413797
什么是DOI,文献DOI怎么找? 2424443
邀请新用户注册赠送积分活动 1417437
关于科研通互助平台的介绍 1395174