生物复合材料
材料科学
复合材料
摩擦学
压缩成型
复合数
聚乙烯
生物材料
模具
纳米技术
作者
Ferda Mindivan,Alime Çolak
摘要
Abstract Reduced graphene oxide (RGOC) filler that was green synthesized by vitamin C had been included in the ultrahigh molecular weight polyethylene (UHMWPE) matrix to produce biocomposite possessing improved properties especially against wear. The biocomposites filled with different loading (0.1, 0.3, 1.0, and 2.0 wt%) of RGOC was produced by a method of liquid phase ultrasonic mixing and then hot press molding. The structural analysis results of biocomposites showed that RGOC well‐dispersed in polymer matrix and confirmed that there was interaction between the RGOC‐UHMWPE. The biocomposite containing 2.0 wt% RGOC (UHMWPE/RGOC‐2) gave the maximum microhardness and the value increased by 22. 5% compared with unfilled polymer. At the same RGOC content, the biocomposite had the highest thermal stability with residue content at 2.42%. The wear and friction behavior of biocomposites were carried out in a reciprocating friction testing machine under distilled water lubricating conditions. The UHMWPE/RGOC‐2 biocomposite had the lowest friction coefficient value (0.034) and the wear rate of the biocomposite decreased by 44%, compared with that of unfilled UHMWPE. Furthermore, fatigue wear tracks were significantly reduced. This study suggests the use of this composite that had excellent tribological behavior as biomaterial instead of UHMWPE.
科研通智能强力驱动
Strongly Powered by AbleSci AI