A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity

肥胖 超重 医学 公共卫生 人口 鉴定(生物学) 系统回顾 老年学 环境卫生 梅德林 病理 政治学 植物 生物 法学
作者
Mahmood Safaei,Elankovan Sundararajan,Maha Driss,Wadii Boulila,Azrulhizam Shapi’i
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104754-104754 被引量:411
标识
DOI:10.1016/j.compbiomed.2021.104754
摘要

Obesity is considered a principal public health concern and ranked as the fifth foremost reason for death globally. Overweight and obesity are one of the main lifestyle illnesses that leads to further health concerns and contributes to numerous chronic diseases, including cancers, diabetes, metabolic syndrome, and cardiovascular diseases. The World Health Organization also predicted that 30% of death in the world will be initiated with lifestyle diseases in 2030 and can be stopped through the suitable identification and addressing of associated risk factors and behavioral involvement policies. Thus, detecting and diagnosing obesity as early as possible is crucial. Therefore, the machine learning approach is a promising solution to early predictions of obesity and the risk of overweight because it can offer quick, immediate, and accurate identification of risk factors and condition likelihoods. The present study conducted a systematic literature review to examine obesity research and machine learning techniques for the prevention and treatment of obesity from 2010 to 2020. Accordingly, 93 papers are identified from the review articles as primary studies from an initial pool of over 700 papers addressing obesity. Consequently, this study initially recognized the significant potential factors that influence and cause adult obesity. Next, the main diseases and health consequences of obesity and overweight are investigated. Ultimately, this study recognized the machine learning methods that can be used for the prediction of obesity. Finally, this study seeks to support decision-makers looking to understand the impact of obesity on health in the general population and identify outcomes that can be used to guide health authorities and public health to further mitigate threats and effectively guide obese people globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的小蚂蚁完成签到,获得积分10
刚刚
gymsunshine完成签到,获得积分10
1秒前
2秒前
我是老大应助QI采纳,获得10
2秒前
6秒前
orixero应助现代子默采纳,获得10
6秒前
想疯完成签到,获得积分20
6秒前
思源应助FORREST1993采纳,获得10
8秒前
hou1995完成签到 ,获得积分10
8秒前
9秒前
zimu012完成签到,获得积分10
9秒前
小赖不赖完成签到 ,获得积分10
9秒前
QI完成签到,获得积分10
10秒前
Xiaoguo发布了新的文献求助10
11秒前
笑羽完成签到,获得积分0
12秒前
hello11完成签到,获得积分10
12秒前
氿369完成签到 ,获得积分10
13秒前
13秒前
无花果应助dd采纳,获得10
15秒前
图苏发布了新的文献求助100
15秒前
18秒前
芋芋发布了新的文献求助10
18秒前
Li完成签到,获得积分10
22秒前
bkagyin应助nanana采纳,获得10
23秒前
niu发布了新的文献求助10
25秒前
25关注了科研通微信公众号
26秒前
27秒前
李爱国应助福宝采纳,获得10
27秒前
28秒前
善学以致用应助小无采纳,获得10
31秒前
NexusExplorer应助Xiaoguo采纳,获得10
31秒前
li发布了新的文献求助10
33秒前
33秒前
dd发布了新的文献求助10
33秒前
共享精神应助旺仔牛奶糖采纳,获得10
34秒前
xiha西希完成签到,获得积分10
34秒前
Y柒完成签到,获得积分10
35秒前
CodeCraft应助科研通管家采纳,获得10
36秒前
上官若男应助科研通管家采纳,获得10
36秒前
Orange应助科研通管家采纳,获得10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979