The mathematics of erythema: Development of machine learning models for artificial intelligence assisted measurement and severity scoring of radiation induced dermatitis

人工智能 卷积神经网络 机器学习 深度学习 计算机科学 红斑 试验装置 分级(工程) 模式识别(心理学) 计算机辅助 皮肤病科 医学 工程类 土木工程 程序设计语言
作者
Rahul Ranjan,Richard Partl,Ricarda Erhart,Nithin Kurup,Harald Schnidar
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:139: 104952-104952 被引量:27
标识
DOI:10.1016/j.compbiomed.2021.104952
摘要

Although significant advancements in computer-aided diagnostics using artificial intelligence (AI) have been made, to date, no viable method for radiation-induced skin reaction (RISR) analysis and classification is available. The objective of this single-center study was to develop machine learning and deep learning approaches using deep convolutional neural networks (CNNs) for automatic classification of RISRs according to the Common Terminology Criteria for Adverse Events (CTCAE) grading system. ScarletredⓇ Vision, a novel and state-of-the-art digital skin imaging method capable of remote monitoring and objective assessment of acute RISRs was used to convert 2D digital skin images using the CIELAB color space and conduct SEV* measurements. A set of different machine learning and deep convolutional neural network-based algorithms has been explored for the automatic classification of RISRs. A total of 2263 distinct images from 209 patients were analyzed for training and testing the machine learning and CNN algorithms. For a 2-class problem of healthy skin (grade 0) versus erythema (grade ≥ 1), all machine learning models produced an accuracy of above 70%, and the sensitivity and specificity of erythema recognition were 67-72% and 72-83%, respectively. The CNN produced a test accuracy of 74%, sensitivity of 66%, and specificity of 83% for predicting healthy and erythema cases. For the severity grade prediction of a 3-class problem (grade 0 versus 1 versus 2), the overall test accuracy was 60-67%, and the sensitivities were 56-82%, 35-59%, and 65-72%, respectively. For estimating the severity grade of each class, the CNN obtained an accuracy of 73%, 66%, and 82%, respectively. Ensemble learning combines several individual predictions to obtain a better generalization performance. Furthermore, we exploited ensemble learning by deploying a CNN model as a meta-learner. The ensemble CNN based on bagging and majority voting shows an accuracy, sensitivity and specificity of 87%, 90%, and 82% for a 2-class problem, respectively. For a 3-class problem, the ensemble CNN shows an overall accuracy of 66%, while for each grade (0, 1, and 2) accuracies were 76%, 69%, and 87%, sensitivities were 70%, 57%, and 71%, and specificities were 78%, 75%, and 95%, respectively. This study is the first to focus on erythema in radiation-dermatitis and produces benchmark results using machine learning models. The outcome of this study validates that the proposed system can act as a pre-screening and decision support tool for oncologists or patients to provide fast, reliable, and efficient assessment of erythema grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang完成签到,获得积分10
刚刚
2秒前
elizabeth339完成签到,获得积分10
4秒前
科研通AI5应助其实采纳,获得10
4秒前
jenningseastera应助滾滾采纳,获得10
5秒前
shshjzh完成签到,获得积分10
6秒前
8秒前
阿斗发布了新的文献求助10
8秒前
追寻书雁完成签到 ,获得积分10
8秒前
给我一支西地兰完成签到,获得积分10
8秒前
科研通AI5应助沉静成仁采纳,获得10
9秒前
9秒前
12秒前
12秒前
长情思山完成签到,获得积分10
12秒前
12秒前
SYLH应助Whisper采纳,获得10
13秒前
在水一方完成签到,获得积分0
13秒前
陈zzzz发布了新的文献求助50
15秒前
科研通AI5应助zhd0808采纳,获得10
15秒前
ayer发布了新的文献求助10
16秒前
宁幼萱发布了新的文献求助10
16秒前
17秒前
Rocky发布了新的文献求助10
17秒前
ZDY完成签到,获得积分10
18秒前
22秒前
24秒前
Archy发布了新的文献求助10
27秒前
慕青应助冷酷访烟采纳,获得10
27秒前
猛男发布了新的文献求助10
29秒前
luo驳回了科目三应助
30秒前
良辰美景完成签到 ,获得积分10
30秒前
31秒前
35秒前
Never.发布了新的文献求助30
35秒前
38秒前
无花果应助biochen采纳,获得10
39秒前
结实抽屉完成签到,获得积分10
39秒前
拼搏的金针菇完成签到 ,获得积分10
39秒前
42秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826402
求助须知:如何正确求助?哪些是违规求助? 3368853
关于积分的说明 10452345
捐赠科研通 3088323
什么是DOI,文献DOI怎么找? 1699063
邀请新用户注册赠送积分活动 817266
科研通“疑难数据库(出版商)”最低求助积分说明 770130