Unpaired Image to Image Translation using Cycle Generative Adversarial Networks

计算机科学 图像翻译 生成语法 图像(数学) 人工智能 生成对抗网络 翻译(生物学) 对抗制 生成模型 鉴别器
作者
Abhinav Dwarkani,Maitri Jain,Jash Thakkar,Kottilingam Kottursamy
出处
期刊:International journal of engineering and advanced technology [Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP]
卷期号:9 (6): 380-385 被引量:2
标识
DOI:10.35940/ijeat.f1525.089620
摘要

In this burgeoning age and society where people are tending towards learning the benefits adversarial network we hereby benefiting the society tend to extend our research towards adversarial networks as a general-purpose solution to image-to-image translation problems. Image to image translation comes under the peripheral class of computer sciences extending our branch in the field of neural networks. We apprentice Generative adversarial networks as an optimum solution for generating Image to image translation where our motive is to learn a mapping between an input image(X) and an output image(Y) using a set of predefined pairs[4]. But it is not necessary that the paired dataset is provided to for our use and hence adversarial methods comes into existence. Further, we advance a method that is able to convert and recapture an image from a domain X to another domain Y in the absence of paired datasets. Our objective is to learn a mapping function G: A —B such that the mapping is able to distinguish the images of G(A) within the distribution of B using an adversarial loss.[1] Because this mapping is high biased, we introduce an inverse mapping function F B—A and introduce a cycle consistency loss[7]. Furthermore we wish to extend our research with various domains and involve them with neural style transfer, semantic image synthesis. Our essential commitment is to show that on a wide assortment of issues, conditional GANs produce sensible outcomes. This paper hence calls for the attention to the purpose of converting image X to image Y and we commit to the transfer learning of training dataset and optimising our code.You can find the source code for the same here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助香菜公主采纳,获得10
1秒前
abao完成签到 ,获得积分10
1秒前
2秒前
2秒前
勤劳妙彤完成签到,获得积分10
2秒前
3秒前
Owen应助大虾采纳,获得10
4秒前
Novice6354完成签到 ,获得积分10
5秒前
xishanmeng完成签到,获得积分10
5秒前
2316953734完成签到,获得积分10
7秒前
所所应助Kuhaku采纳,获得10
7秒前
7秒前
finerain7发布了新的文献求助10
8秒前
8秒前
9秒前
suiwuya发布了新的文献求助10
11秒前
11秒前
遇上就这样吧应助zhuzhu采纳,获得50
13秒前
14秒前
viavia发布了新的文献求助10
14秒前
多多发布了新的文献求助10
15秒前
beibei完成签到,获得积分10
15秒前
suiwuya完成签到,获得积分10
17秒前
17秒前
孤剑事离程完成签到,获得积分10
17秒前
大虾发布了新的文献求助10
17秒前
xxxxaaaa123完成签到,获得积分10
18秒前
19秒前
元谷雪应助科研通管家采纳,获得10
19秒前
19秒前
田様应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
在水一方应助Sherlly采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839747
求助须知:如何正确求助?哪些是违规求助? 3382082
关于积分的说明 10521084
捐赠科研通 3101451
什么是DOI,文献DOI怎么找? 1708109
邀请新用户注册赠送积分活动 822159
科研通“疑难数据库(出版商)”最低求助积分说明 773208