亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy

医学 青光眼 接收机工作特性 视野 卷云 置信区间 光学相干层析成像 视神经 绝对偏差 眼科 开角型青光眼 神经纤维层 视神经病变 视网膜 内科学 数学 统计 气象学 物理
作者
Jian Xiong,Fei Li,Diping Song,Guangxian Tang,Junjun He,Kai Gao,Hengli Zhang,Weijing Cheng,Yunhe Song,Fengbin Lin,Kun Hu,Peiyuan Wang,Ji-Peng Olivia Li,Tin Aung,Yu Qiao,Xiulan Zhang,Daniel Ting
出处
期刊:Ophthalmology [Elsevier]
卷期号:129 (2): 171-180 被引量:91
标识
DOI:10.1016/j.ophtha.2021.07.032
摘要

PurposeTo develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).DesignCross-sectional study.SubjectsTwo thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.MethodsFusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.Main Outcome MeasuresDiagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).ResultsFusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set.ConclusionsFusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON. To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON). Cross-sectional study. Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients. FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects. Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input). FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set. FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
445hhj完成签到 ,获得积分10
34秒前
36秒前
40秒前
43秒前
50秒前
天天开心最重要完成签到,获得积分20
1分钟前
2分钟前
我不爱吃红苹果完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
4分钟前
小白加油完成签到 ,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助zy采纳,获得10
6分钟前
6分钟前
zy发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
caspar完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
heisa完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
沈惠映完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595751
求助须知:如何正确求助?哪些是违规求助? 4680984
关于积分的说明 14818206
捐赠科研通 4653030
什么是DOI,文献DOI怎么找? 2535669
邀请新用户注册赠送积分活动 1503553
关于科研通互助平台的介绍 1469764