Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy

医学 青光眼 接收机工作特性 视野 卷云 置信区间 光学相干层析成像 视神经 绝对偏差 眼科 开角型青光眼 神经纤维层 视神经病变 视网膜 内科学 数学 统计 气象学 物理
作者
Jian Xiong,Fei Li,Diping Song,Guangxian Tang,Junjun He,Kai Gao,Hengli Zhang,Weijing Cheng,Yunhe Song,Fengbin Lin,Kun Hu,Peiyuan Wang,Ji-Peng Olivia Li,Tin Aung,Yu Qiao,Xiulan Zhang,Daniel Ting
出处
期刊:Ophthalmology [Elsevier BV]
卷期号:129 (2): 171-180 被引量:70
标识
DOI:10.1016/j.ophtha.2021.07.032
摘要

PurposeTo develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).DesignCross-sectional study.SubjectsTwo thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.MethodsFusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.Main Outcome MeasuresDiagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).ResultsFusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set.ConclusionsFusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON. To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON). Cross-sectional study. Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients. FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects. Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input). FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set. FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
2秒前
xiaozhejia完成签到,获得积分10
7秒前
KM完成签到,获得积分10
9秒前
12秒前
喜悦落雁完成签到 ,获得积分20
17秒前
18秒前
花鸟风月evereo完成签到,获得积分10
20秒前
20秒前
21秒前
艾科研发布了新的文献求助10
21秒前
桐桐应助夏老师采纳,获得10
22秒前
23秒前
24秒前
迷失自我发布了新的文献求助10
24秒前
落后以旋发布了新的文献求助10
25秒前
obaica发布了新的文献求助10
25秒前
yewy完成签到 ,获得积分10
26秒前
26秒前
搜集达人应助HJY采纳,获得10
26秒前
Anyhow发布了新的文献求助10
28秒前
AAAaa发布了新的文献求助10
30秒前
32秒前
丁娜完成签到,获得积分10
33秒前
星辰大海应助迷失自我采纳,获得10
34秒前
Jiangzhibing发布了新的文献求助10
34秒前
852应助未命名采纳,获得10
35秒前
111关闭了111文献求助
39秒前
herococa应助科研通管家采纳,获得10
42秒前
乐乐应助科研通管家采纳,获得10
42秒前
丘比特应助科研通管家采纳,获得10
42秒前
领导范儿应助科研通管家采纳,获得10
42秒前
情怀应助科研通管家采纳,获得10
42秒前
鸣笛应助科研通管家采纳,获得10
42秒前
英俊的铭应助科研通管家采纳,获得10
42秒前
Sisyphus应助科研通管家采纳,获得20
42秒前
jszz应助科研通管家采纳,获得30
42秒前
我是老大应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939630
求助须知:如何正确求助?哪些是违规求助? 3485692
关于积分的说明 11034089
捐赠科研通 3215588
什么是DOI,文献DOI怎么找? 1777288
邀请新用户注册赠送积分活动 863420
科研通“疑难数据库(出版商)”最低求助积分说明 798854