Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis With Limited Data

计算机科学 初始化 人工智能 机器学习 断层(地质) 分类 任务(项目管理) 元学习(计算机科学) 工程类 情报检索 地质学 地震学 程序设计语言 系统工程
作者
Yidan Hu,Ruonan Liu,Xianling Li,Dongyue Chen,Qinghua Hu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 3894-3904 被引量:99
标识
DOI:10.1109/tii.2021.3112504
摘要

Recently, deep learning-based intelligent fault diagnosis methods have been developed rapidly, which rely on massive data to train the diagnosis model. However, it is usually difficult to collect sufficient failure data in practical industrial production, thus limits the application of intelligent diagnosis methods. To address the few-shot fault diagnosis problem, a task-sequencing meta-learning method is proposed in this article. First, the meta-learning model is trained over a series of learning tasks to obtain knowledge about how to diagnosis. Thus, the learned knowledge can help adapt and generalize with a few examples when dealing with new tasks that have never been encountered. Then, considering the difference and connection between different failures and diagnosis tasks, a task-sequencing algorithm is proposed to sort meta training tasks from easy to difficult, which followed the way human acquire knowledge. After evaluating the difficulty of each task, the proposed method learns simple tasks first and generalizes the learned knowledge to complex tasks. Better knowledge adaptability is obtained by gradually increasing the task difficulty. Finally, utilizing gradient-based meta learning, the initialization parameters are trained by a small number of gradient steps. The effectiveness of the proposed method is validated by a practice rolling bearing dataset and a power system dataset. The experiment results illustrate that the proposed method can identify new categories with only several samples. In addition, it also shows advantages in fault diagnosis when the categories are fine-grained according to the working conditions. Therefore, the proposed method is suitable for solving the few-shot problem in practice and complicated fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛肉面完成签到,获得积分10
1秒前
hjx完成签到,获得积分20
3秒前
文献蚂蚁发布了新的文献求助10
4秒前
6秒前
00完成签到,获得积分10
8秒前
风汐5423完成签到,获得积分10
10秒前
早早完成签到,获得积分10
10秒前
稳重夜绿发布了新的文献求助10
11秒前
Owen应助hjx采纳,获得30
11秒前
11秒前
正直觅云完成签到,获得积分10
14秒前
guohong完成签到,获得积分10
15秒前
悦悦发布了新的文献求助10
16秒前
科研通AI5应助tdtk采纳,获得10
21秒前
儒雅一凤完成签到 ,获得积分10
22秒前
23秒前
飘逸锦程完成签到 ,获得积分10
25秒前
Hello应助金熙美采纳,获得10
25秒前
27秒前
DDDD发布了新的文献求助30
27秒前
Kate发布了新的文献求助10
28秒前
瓦罐汤完成签到 ,获得积分10
29秒前
小巧安南完成签到,获得积分10
32秒前
32秒前
jyy发布了新的文献求助20
34秒前
35秒前
自信谷冬完成签到,获得积分10
37秒前
文静的紫萱完成签到 ,获得积分10
38秒前
莫道桑榆完成签到,获得积分10
38秒前
研友_VZG7GZ应助Kate采纳,获得10
40秒前
金熙美发布了新的文献求助10
41秒前
43秒前
waa完成签到,获得积分10
46秒前
赘婿应助纯真黄蜂采纳,获得10
46秒前
haofan17完成签到,获得积分10
47秒前
所所应助小巧安南采纳,获得10
47秒前
48秒前
心灵美绝施完成签到,获得积分10
48秒前
YY发布了新的文献求助10
49秒前
zoro应助金熙美采纳,获得10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552