An adaptive federated learning scheme with differential privacy preserving

计算机科学 差别隐私 方案(数学) 稳健性(进化) 过度拟合 人工智能 分布式学习 机器学习 联合学习 适应性学习 过程(计算) 分布式计算 数据挖掘 人工神经网络 化学 数学分析 基因 操作系统 心理学 生物化学 数学 教育学
作者
Xiang Wu,Yongting Zhang,Minyu Shi,Pei Li,Ruirui Li,Naixue Xiong
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:127: 362-372 被引量:137
标识
DOI:10.1016/j.future.2021.09.015
摘要

Driven by the upcoming development of the sixth-generation communication system (6G), the distributed machine learning schemes represented by federated learning has shown advantages in data utilization and multi-party cooperative model training. The total communication costs of federated learning is related to the number of communication rounds, the communication consumption of each participants, the setting of reasonable learning rate and the guarantee of calculation fairness. In addition, the isolating data strategy in the federated learning framework cannot completely guarantee the privacy security of users. Motivated by the above problems, this paper proposes a federated learning scheme combined with the adaptive gradient descent strategy and differential privacy mechanism, which is suitable for multi-party collaborative modeling scenarios. To ensure that federated learning scheme can train efficiently with limited communications costs, the adaptive learning rate algorithm is innovatively used to adjust the gradient descent process and avoid the model overfitting and fluctuation phenomena, so as to improve the modeling efficiency and performance in multi-party calculation scenarios. Furthermore, in order to adapt to the ultra-large-scale distributed secure computing scenario, this research introduces differential privacy mechanism to resist various background knowledge attacks. Experimental results demonstrate that the proposed adaptive federated learning model performs better than the traditional models under fixed communication costs. This novel modeling scheme also has strong robustness to different super-parameter settings and provides stronger quantifiable privacy preserving for federated learning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助山高采纳,获得10
刚刚
满当当发布了新的文献求助10
1秒前
Leee完成签到,获得积分20
2秒前
一行白鹭完成签到,获得积分20
2秒前
飘雪发布了新的文献求助20
2秒前
2秒前
2秒前
Xxynysmhxs完成签到 ,获得积分10
3秒前
Chuwei发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
柯南发布了新的文献求助10
4秒前
调皮盼烟发布了新的文献求助10
4秒前
6秒前
7秒前
脑洞疼应助ff采纳,获得30
8秒前
TOW应助Solar energy采纳,获得10
8秒前
英俊延恶发布了新的文献求助20
9秒前
CipherSage应助满当当采纳,获得10
10秒前
害怕的夏蓉完成签到,获得积分20
11秒前
NANA发布了新的文献求助10
11秒前
CYAA完成签到,获得积分10
12秒前
13秒前
认真的飞扬完成签到,获得积分10
14秒前
111完成签到,获得积分10
16秒前
纯真的笑容完成签到,获得积分20
16秒前
华仔应助扎心采纳,获得10
18秒前
18秒前
难过的丹烟完成签到,获得积分10
20秒前
21秒前
22秒前
寒冷语兰发布了新的文献求助10
22秒前
佳期如梦完成签到 ,获得积分10
23秒前
多情老三发布了新的文献求助10
26秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
冰魂应助科研通管家采纳,获得10
27秒前
bkagyin应助科研通管家采纳,获得10
27秒前
Tonald Yang发布了新的文献求助10
27秒前
昏睡的蟠桃应助jyy采纳,获得200
28秒前
wanci应助Solar energy采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780146
求助须知:如何正确求助?哪些是违规求助? 3325451
关于积分的说明 10223189
捐赠科研通 3040655
什么是DOI,文献DOI怎么找? 1668944
邀请新用户注册赠送积分活动 798878
科研通“疑难数据库(出版商)”最低求助积分说明 758623